94 resultados para Calcium carbide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the roles of intercellular gap junctions and extracellular ATP diffusion in bone cell calcium signaling propagation in bone tissue, in vitro bone cell networks were constructed by using microcontact printing and self-assembled monolayer technologies. In the network, neighboring cells were interconnected through functional gap junctions. A single cell at the center of the network was mechanically stimulated by using an AFM nanoindenter. Intracellular calcium ([Ca2+](i)) responses of the bone cell network were recorded and analyzed. In the untreated groups, calcium propagation from the stimulated cell to neighboring cells was observed in 40% of the tests. No significant difference was observed in this percentage when the intercellular gap junctions were blocked. This number, however, decreased to 10% in the extracellular ATP-pathway-blocked group. When both the gap junction and ATP pathways were blocked, intercellular calcium waves were abolished. When the intracellular calcium store in ER was depleted, the indented cell can generate calcium transients, but no [Ca2+](i) signal can be propagated to the neighboring cells. No [Ca2+](i) response was detected in the cell network when the extracellular calcium source was removed. These findings identified the biochemical pathways involved in the calcium signaling propagation in bone cell networks. Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, the mechanism of intercellular calcium wave propagation in bone cell networks was identified. By using micro-contact printing and self-assembled monolayer technologies, two types of in vitro bone cell networks were constructed: open-ended linear chains and looped hexagonal networks with precisely controlled intercellular distances. Intracellular calcium responses of the cells were recorded and analysed when a single cell in the network was mechanically stimulated by nano-indentation. The looped cell network was shown to be more efficient than the linear pattern in transferring calcium signals from cell to cell. This phenomenon was further examined by pathway-inhibition studies. Intercellular calcium wave propagation was significantly impeded when extracellular adenosine triphosphate (ATP) in the medium was hydrolysed. Chemical uncoupling of gap junctions, however, did not significantly decrease the transferred distance of the calcium wave in the cell networks. Thus, it is extracellular ATP diffusion, rather than molecular transport through gap junctions, that dominantly mediates the transmission of mechanically elicited intercellular calcium waves in bone cells. The inhibition studies also demonstrated that the mechanical stimulation-induced calcium responses required extracellular calcium influx, whereas the ATP-elicited calcium wave relied on calcium release from the calcium store of the endoplasmic reticulum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fast plasma sintering deposition of SiC nano-structured coatings was achieved using a specially designed non-transferred dc plasma torch operated at reduced pressure. Employing the Taguchi method, the deposition parameters were optimized and verified. With the optimized combination of deposition parameters, homogeneous SiC coatings were deposited on relatively large area substrates of Φ50 mm and 50×50 mm with a deposition rate as high as 20 μm/min. Ablation test showed that such coatings can be used as oxidation resistance coatings in high temperature oxidizing environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work specimens of mono-crystalline silicon carbide (4H polytype) were irradiated to three successively increasing ion fluences ranging from 7.2 x 10(14) to 6.0 x 10(16) ions/cm(2) (corresponding to the peak displacement damage of 1, 4 and 13 dpa) with Ne and Xe ions respectively with the energy of 2.3 MeV/amu. The irradiated specimens were subsequently annealed at temperatures of 1173 and 1273 K. Defect structure was investigated with transmission electron microscopy (TEM) using a cross-sectional specimen preparation technique. The typical microstructures of the annealed specimens irradiated with Ne or Xe ions to high fluences are characterized by small gas bubbles in high concentration in the peak damage region and black dots and dislocation loops (located in the basal plane) in a shallower and broader depth region. Larger dislocation loops were observed in the Xe-ion irradiated specimen than in the Ne-ion irradiated specimen at the same peak damage level. The enhanced formation of dislocation loops in the case of Xe-ion irradiation is understandable by assuming stronger inclination of heavier inert-gas atoms to occupy substitute site in the peak damage region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the objective of making calcium alginate gel beads with small and uniform size, membrane emulsification coupled with internal gelation was proposed. Spherical gel beads with mean size of about 50 mum, and even smaller ones in water, and with narrow size distribution were successfully obtained. Experimental studies focusing mainly on the effect of process parameters on bead properties were performed. The size of the beads was mainly dependent on the diameter of the membrane pores. High transmembrane pressure made for large gel beads with wide size distribution. Low sodium alginate concentration produced nonspherical beads, whereas a high concentration was unsuitable for the production of small beads with narrow distribution. Thus 1.5% w/v was enough. A high surfactant concentration favored the formation of small beads, but the adverse effect on mass transfer should be considered in this novel process. (C) 2002 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ca-alginate beads were prepared with either external or internal calcium sources. The structures of both beads were investigated with the aid of scanning electron microscopy (SEM) and confocal microscopy. It was shown that the beads with internal calcium source had a looser structure and bigger pore size than those with external calcium source. The attempts to interpret the difference were carried out by determining the Ca content within the beads at various times, which indicated that it was the different gelation mechanisms that caused the difference of structures of both beads. Furthermore, it was also found that the diffusion rate of haemoglobin (Hb) within the beads with an internal calcium source was faster than that of the beads with an external one, which was consistent with the observation of their structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Freshly prepared Fe and Al hydrous oxide gels and the amorphous product of heating gibbsite selectively adsorbed traces of Ca and Sr from solutions containing a large excess (∼1M) of NaNO3. The fraction of the added Ca (Sr) adsorbed depended principally on the suspension pH, the amount of solid present, and to a lesser extent on the NaNO3 concentration. Significant Ca and Sr adsorption occurred on the Fe and Al gels, and heated gibbsite, at pH values below the points of zero charge (8.1, 9.4, and 8.3±0.1, respectively), indicating specific adsorption. The pH (± 0.10) at which 50% of the Ca was adsorbed (pH50) occurred at pH 7.15 for the Fe gel (0.093M Fe), 8.35 for the Al gel (0.093M Al), and 6.70 for the heated gibbsite (0.181M Al); for Sr, the pH50 values were 7.10, 9.00, and 6.45, respectively. For the Fe gel and heated gibbsite, an empirical model based on the law of mass action described the pH dependence of adsorption reasonably well and suggested that for each Ca or Sr fraction adsorbed, approximately one proton was released. Failure of the Al gel to fit this model may have resulted from its rapid aging.