148 resultados para CRYSTAL SILICON
Resumo:
于2010-11-23批量导入
Resumo:
Argon gas, as a protective environment and carrier of latent heat, has an important effect on the temperature distribution in crystals and melts. Numeric simulation is a potent tool for solving engineering problems. In this paper, the relationship between argon gas flow and oxygen concentration in silicon crystals was studied systematically. A flowing stream of argon gas is described by numeric simulation for the first time. Therefore, the results of experiments can be explained, and the optimum argon flow with the lowest oxygen concentration can be achieved. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The single crystal of heteropoly blue, HsSiMo12O40.12H2O, the reduced product of molybdenum-silicon heteropoly acid, was prepared by electrochemical reduction and evaporation in nitrogen atmosphere. The Crystal structure of the product was determined. The heteropoly blue H8SiMo12O40.12H2O, Crystallizes space group P1BAR a = 1.3769 (3) nm, b = 1.4346 (4) nm, c = 1.4134 (4) nm, alpha = 120.47 (2)-degrees, beta = 110.70 (2)-degrees, gamma = 66.11 (2)-degrees, Z = 2, R = 0.0608. The heteropoly blue anion was determined to have Keggin Structure and alpha-isomer and it remained the structure of the unreduced heteropoly acid anion. But the distortion of the structure and the changes of bond length and bond angle take place obviously. The four Mo5+ Positions were determined in the structure.
Resumo:
Silicon carbide bulk crystals were grown in an induction-heating furnace using the physical vapor transport method. Crystal growth modeling was performed to obtain the required inert gas pressure and temperatures for sufficiently large growth rates. The SiC crystals were expanded by designing a growth chamber having a positive temperature gradient along the growth interface. The obtained 6H-SiC crystals were cut into wafers and characterized by Raman scattering spectroscopy and X-ray diffraction, and the results showed that most parts of the crystals had good crystallographic structures.
Resumo:
The physical vapor transport (PVT) method is being widely used to grow large-size single SiC crystals. The growth process is associated with heat and mass transport in the growth chamber, chemical reactions among multiple species as well as phase change at the crystal/gas interface. The current paper aims at studying and verifying the transport mechanism and growth kinetics model by demonstrating the flow field and species concentration distribution in the growth system. We have developed a coupled model, which takes into account the mass transport and growth kinetics. Numerical simulation is carried out by employing an in-house developed software based on finite volume method. The results calculated are in good agreement with the experimental observation.
Resumo:
Modeling of fluid flows in crystal growth processes has become an important research area in theoretical and applied mechanics. Most crystal growth processes involve fluid flows, such as flows in the melt, solution or vapor. Theoretical modeling has played an important role in developing technologies used for growing semiconductor crystals for high performance electronic and optoelectronic devices. The application of devices requires large diameter crystals with a high degree of crystallographic perfection, low defect density and uniform dopant distribution. In this article, the flow models developed in modeling of the crystal growth processes such as Czochralski, ammonothermal and physical vapor transport methods are reviewed. In the Czochralski growth modeling, the flow models for thermocapillary flow, turbulent flow and MHD flow have been developed. In the ammonothermal growth modeling, the buoyancy and porous media flow models have been developed based on a single-domain and continuum approach for the composite fluid-porous layer systems. In the physical vapor transport growth modeling, the Stefan flow model has been proposed based on the flow-kinetics theory for the vapor growth. In addition, perspectives for future studies on crystal growth modeling are proposed. (c) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
The melt flow and temperature distribution in a 200 mm silicon Czochralski furnace with a cusp magnetic field was modeled and simulated by using a finite-volume based FLUTRAPP ( Fluid Flow and Transport Phenomena Program) code. The melt flow in the crucible was focused, which is a result of the competition of buoyancy, the centrifugal forces caused by the rotations of the crucible and crystal, the thermocapillary force on the free surfaces and the Lorentz force induced by the cusp magnetic field. The zonal method for radiative heat transfer was used in the growth chamber, which was confined by the crystal surface, melt surface, crucible, heat shield, and pull chamber. It was found that the cusp magnetic field could strength the dominant counter-rotating swirling flow cell in the crucible and reduce the flow oscillation and the pulling-rate fluctuation. The fluctuation of dopant and oxygen concentration in the growing crystal could thus be smoothed.
Resumo:
The influence of low gravity level on crystal growth in the floating zone, which involves thermocapillary convection, phase change convection, thermal and solutal diffusion, is investigated numerically by a finite element method for the silicon crystal growth process. The velocity, temperature, concentration fields and phase change interfaces depending on heating temperature and growth rates are analyzed. The influence of low gravity level on the concentration is studied especially. The results show that the non-uniformities of concentration are about 10(-3) for growth rate nu(p) = 5.12 x 10(-8) m/s, 10(-2) for nu(p) = 5.12 x 10(-7) m/s and relatively larger for larger growth rate in the gravity level g = 0-9.8 m/s2. The thermocapillary effect is strong in comparison with the Bridgman system, and the level of low gravity is relatively insensitive for lower growth rates.
Resumo:
A general three-dimensional model is developed for simulation of the growth process of silicon single crystals by Czochralski technique. The numerical scheme is based on the curvilinear non-orthogonal finite volume discretization. Numerical solutions show that the flow and temperature fields in the melt are asymmetric and unsteady for 8’’ silicon growth. The effects of rotation of crystal on the flow structure are studied. The rotation of crystal forms the Ekman layer in which the temperature gradient along solid/melt surface is small.
Resumo:
Czochralski (Cz) technique, which is used for growing single crystals, has dominated the production of single crystals for electronic applications. The Cz growth process involves multiple phases, moving interface and three-dimensional behavior. Much has been done to study these phenomena by means of numerical methods as well as experimental observations. A three-dimensional curvilinear finite volume based algorithm has been developed to model the Cz process. A body-fitted transformation based approach is adopted in conjunction with a multizone adaptive grid generation (MAGG) technique to accurately handle the three-dimensional problems of phase-change in irregular geometries with free and moving surfaces. The multizone adaptive model is used to perform a three-dimensional simulation of the Cz growth of silicon single crystals.Since the phase change interface are irregular in shape and they move in response to the solution, accurate treatment of these interfaces is important from numerical accuracy point of view. The multizone adaptive grid generation (MAGG) is the appropriate scheme for this purpose. Another challenge encountered is the moving and periodic boundary conditions, which is essential to the numerical solution of the governing equations. Special treatments are implemented to impose the periodic boundary condition in a particular direction and to determine the internal boundary position and shape varying with the combination of ambient physicochemical transport process and interfacial dynamics. As indicated above that the applications and processes characterized by multi-phase, moving interfaces and irregular shape render the associated physical phenomena three-dimensional and unsteady. Therefore a generalized 3D model rather than a 2D simulation, in which the governing equations are solved in a general non-orthogonal coordinate system, is constructed to describe and capture the features of the growth process. All this has been implemented and validated by using it to model the low pressure Cz growth of silicon. Accuracy of this scheme is demonstrated by agreement of simulation data with available experimental data. Using the quasi-steady state approximation, it is shown that the flow and temperature fields in the melt under certain operating conditions become asymmetric and unsteady even in the absence of extrinsic sources of asymmetry. Asymmetry in the flow and temperature fields, caused by high shear initiated phenomena, affects the interface shape in the azimuthal direction thus results in the thermal stress distribution in the vicinity, which has serious implications from crystal quality point of view.
Resumo:
Czochralski (CZ) crystal growth process is a widely used technique in manufacturing of silicon crystals and other semiconductor materials. The ultimate goal of the IC industry is to have the highest quality substrates, which are free of point defect, impurities and micro defect clusters. The scale up of silicon wafer size from 200 mm to 300 mm requires large crucible size and more heat power. Transport phenomena in crystal growth processes are quite complex due to melt and gas flows that may be oscillatory and/or turbulent, coupled convection and radiation, impurities and dopant distributions, unsteady kinetics of the growth process, melt crystal interface dynamics, free surface and meniscus, stoichiometry in the case of compound materials. A global model has been developed to simulate the temperature distribution and melt flow in an 8-inch system. The present program features the fluid convection, magnetohydrodynamics, and radiation models. A multi-zone method is used to divide the Cz system into different zones, e.g., the melt, the crystal and the hot zone. For calculation of temperature distribution, the whole system inside the stainless chamber is considered. For the convective flow, only the melt is considered. The widely used zonal method divides the surface of the radiation enclosure into a number of zones, which has a uniform distribution of temperature, radiative properties and composition. The integro-differential equations for the radiative heat transfer are solved using the matrix inversion technique. The zonal method for radiative heat transfer is used in the growth chamber, which is confined by crystal surface, melt surface, heat shield, and pull chamber. Free surface and crystal/melt interface are tracked using adaptive grid generation. The competition between the thermocapillary convection induced by non-uniform temperature distributions on the free surface and the forced convection by the rotation of the crystal determines the interface shape, dopant distribution, and striation pattern. The temperature gradients on the free surface are influenced by the effects of the thermocapillary force on the free surface and the rotation of the crystal and the crucible.
Resumo:
The physical vapor transport (PVT) method is being widely used to grow large-size single SiC crystals. The growth process is associated with heat and mass transport in the growth chamber, chemical reactions among multiple species as well as phase change at the crystal/gas interface. The current paper aims at studying and verifying the transport mechanism and growth kinetics model by demonstrating the flow field and species concentration distribution in the growth system. We have developed a coupled model, which takes into account the mass transport and growth kinetics. Numerical simulation is carried out by employing an in-house developed software based on finite volume method. The results calculated are in good agreement with the experimental observation.
Resumo:
Silicon carbide bulk crystals were grown in an induction-heating furnace using the physical vapor transport method. Crystal growth modeling was performed to obtain the required inert gas pressure and temperatures for sufficiently large growth rates. The SiC crystals were expanded by designing a growth chamber having a positive temperature gradient along the growth interface. The obtained 6H-SiC crystals were cut into wafers and characterized by Raman scattering spectroscopy and X-ray diffraction, and the results showed that most parts of the crystals had good crystallographic structures.
Resumo:
We demonstrate the coherent linking of periodic nano-ripples formed on the surface of ZnO crystals induced by femtosecond laser pulses. By adjusting the distance between two laser scanning zones, the periodic nano-ripples induced by two separated laser writing processes can be coherently linked and the ZnO nanograting with much longer grooves is therefore produced. The length limitation of this kind of nanograting previously set by the laser focus size is thus overcome. The micro-Raman mapping technique is used to evaluate the quality of coherent linking, and the underlying physics is discussed. The demonstrated scheme is promising for producing large-size self-organized nanogratings induced by femtosecond laser pulses.
Resumo:
Two collinear femtosecond laser pulses, one at wavelength of 800 nm and the other at 400 nm (double frequency), simultaneously irradiated the surface of ZnSe crystal, which resulted in regular nanograting with period of 180 nm on the whole ablation area. We attribute the formation of the nanograting to be due to the interference between the surface scattered wave of 800 nm lasers and the 400 nm light. The period of the nanograting Lambda is about lambda/2n, where n is refractive index of the sample, and lambda, the laser wavelength. This mechanism is supported by observation of rotation of the nanograting with the polarization of 400 nm light, and by the dependence of Lambda similar to lambda of the nanoripples on the surface of semiconductors and dielectrics.