58 resultados para CHARPY IMPACT PROPERTIES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blends consisting of high-impact polystyrene (HIPS) as the matrix and polyamide 1010 (PA1010) as the dispersed phase were prepared by mixing. The grafting copolymers of HIPS and maleic anhydride (MA), the compatibilizer precursors of the blends, were synthesized. The contents of the IMA in the grafting copolymers are 4.7 wt % and 1.6 wt %, and were assigned as HAM and LMA, respectively. Different blend morphologies were observed by scanning electron microscopy (SEM); the domain size of the PA1010 dispersed phase in the HIPS matrix of compatibilized blends decreased comparing with that of uncompatibilized blends. For the blend with 25 wt % HIPS-g-MA component, the T-c of PA1010 shifts towards lower temperature, from 178 to 83 degrees C. It is found that HIPS-g-MA used as the third component has profound effect on the mechanical properties of the resulting blends. This behavior has been attributed to the chemical reaction taking place in situ during the mixing between the two components of PA1010 and HIPS-g-MA. (C) 2000 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the radiation properties of the immiscible blend of nylon1010 and HIPS. The gel fraction increased with increasing radiation dose. The network was found mostly in nylon1010, the networks were also found in both nylon1010 and HIPS when the dose reaches 0.85 MGy or more. We used the Charleby-Pinner equation and the modified Zhang-Sun-Qian equation to simulate the relationship with the dose and the sol fraction. The latter equation fits well with these polymer blends and the relationship used by it showed better linearity than the one by the Charleby-Pinner equation. We also studied the conditions of formation of the network by the mathematical expectation theorem for the binary system. Thermal properties of polymer blend were observed by DSC curves. The crystallization temperature decreases with increasing dose because the cross-linking reaction inhibited the crystallization procession and destroyed the crystals. The melting temperature also reduced with increasing radiation dose. The dual melting peak gradually shifted to single peak and the high melting peak disappeared at high radiation dose. However, the radiation-induced crystallization was observed by the heat of fusion increasing at low radiation dose. On the other hand, the crystal will be damaged by radiation. A similar conclusion may be drawn by the DSC traces when the polymer blends were crystallized. When the radiation dose increases, the heat of fusion reduces dramatically and so does the heat of crystallization. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A functionalized high-density polyethylene (HDPE) with maleic anhydride (MAH) was prepared using a reactive extruding method. This copolymer was used as a compatibilizer of blends of polyamide 6 (PA6) and ultrahigh molecular weight polyethylene (UHMWPE). Morphologies were examined by a scanning electron microscope. It was found that the dimension of UHMWPE and HDPE domains in the PA6 matrix decreased dramatically, compared with that of the uncompatibilized blending system. The size of the UHMWPE domains was reduced from 35 mu m (PA6/UHMWPE, 80/20) to less than 4 mu m (PA6/UHMWPE/HDPE-g-MAH, 80/20/20). The tensile strength and Izod impact strength of PA6/UHMWPE/HDPE-g-MAH (80/20/20) were 1.5 and 1.6 times as high as those of PA6/UHMWPE: (80/20), respectively. This behavior could be attributed to chemical reactions between the anhydride groups of HDPE-g-MAH and the terminal amino groups of PA6 in PA6/UHMWPE/HDPE-g-MAH blends. Thermal analysis was performed to confirm that the above chemical reactions took place during the blending process. (C) 2000 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystallization, dynamic mechanical properties, tensile properties and morphology features of polyamidel 1010(PA1010) blends with the high impact polystyrere (HIPS) and maleic anhydride (MA) grafted HIPS(HIPS-g-MA) were examined at a wide composition range. By comparison the PA1010/HIPS-g-MA and PA1010/HIPS binary blends, it was found that the size of the domains of HIPS-g-MA was much smaller than that of HIPS at the same compositions. It was found that the mechanical properties of PA1010/HIPS-g-MA blends were obviously higher than those of PA1010/HIPS blends. When the content of PA1010 is more than 50wt% in the blends, the crystallization temperatures, T-cs, of PA1010 increase with increasing the content of HIPS-g-MA. On the other hand, when the content of PA1010 in the blends is less than 35wt% the fraction crystallization is observed. The same result is not obtained for the blends of PA1010/HIPS. These behaviors could be attributed to the chemical interactions between the two components and good dispersion in PA1010/HIPS-g-MA blends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystallization behaviors, dynamic mechanical properties, tensile, and morphology features of polyamide1010 (PA1010) blends with the high-impact polystyrene (HIPS) were examined at a wide composition range. Both unmodified and maleicanhydride-(MA)-grafted HIPS (HIPS-g-MA) were used. It was found that the domain size of HIPS-g-MA was much smaller than that of HIPS at the same compositions in the blends. The mechanical performances of PA1010-HIPS-g-MA blends were enhanced much more than that of PA1010-HIPS blends. The crystallization temperature of PA1010 shifted towards higher temperature as HIPS-g-MA increased from 20 to 50% in the blends. For the blends with a dispersed PA phase (less than or equal to 35 wt %), the T-c of PA1010 shifted towards lower temperature, from 178 to 83 degrees C. An additional transition was detected at a temperature located between the T-g's of PA1010 and PS. It was associated with the interphase relaxation peak. Its intensity increased with increasing content of PA1010, and the maximum occurred at the composition of PA1010-HIPS-g-MA 80/20. (C) 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 857-865, 1999.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of the content of a copolymer consisting of high impact polystyrene grafted with maleic anhydride (HIPS-g-MA) on morphological and mechanical properties of PA1010/HIPS blends has been studied. Blend morphologies were controlled by adding HIPS-g-MA during melt processing, thus the dispersion of the HIPS phase and interfacial adhesion between the domains and matrices in these blends were changed obviously. The weight fractions of HIPS-g-MA in the blends increased from 2.5 to 20, then much finer dispersions of discrete HIPS phase with average domain sizes decreased from 6.1 to 0.1 mu m were obtained. It was found that a compatibilizer, a graft copolymer of HIPS-g-MA and PA1010 was synthesized in situ during the melt mixing of the blends. The mechanical properties of compatibilized blends were obviously better than those of uncompatibilized PA1010/HIPS blends. These behaviors could be attributed to the chemical interactions between the two components of PA1010 and HIPS-g-MA and good dispersion in PA1010/HIPS/HIPS-g-MA blends. Evidence of reactions in the blends was seen in the morphology and mechanical behaviour of the solid. The blend containing 5 wt % HIPS-g-MA component exhibited outstanding toughness. (C) 1999 Kluwer Academic Publishers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The toughening effect of the shell content of a core-shell latex polymer poly(butyl acrylate) (PBA)-cs-poly(methyl methacrylate) (PMMA) on its blends with polycarbonate (PC) was studied. The changes of mechanical properties, morphology, and compatibility of the blends of PC/PBA-cs-PMMA with the change of the shell thickness of PBA-cs-PMMA were investigated. It is interesting to notice that mechanical properties of the blends are very sensitive to the shell thickness (i.e., shell content), and that there is a possibility to adjust the impact and tensile properties of the blend by selecting a PBA-cs-PMMA with a proper core/shell ratio. Hence, a modified PC material with balanced mechanical properties may be prepared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The toughening effect of the content of a core-shell poly(butyl acrylate)/poly(methyl methacrylate) latex polymer (PBA-cs-PMMA) on the mechanical properties, morphology and compatibility of its blends with polycarbonate(PC), i.e., PC/PBA-cs-PMMa, was studied. The mechanical properties of the blends are strongly affected by varying the content of PBA-cs-PMMA in the blend. When the PBA-cs-PMMA content is only 5 wt.-%, the impact strength of PC/PBA-cs-PMMA is almost 19 times as high as that of pure PC, indicating that PBA-cs-PMMA is a very good impact modifier for PC. With increasing interphacial layer thickness and decreasing interphacial tension, the interphacial activity becomes more and more effective and, at the same time, miscibility increases too.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morphology, mechanical properties, and interfacial interaction of polyamide 1010/polypropylene (PA1010/ PP) blends compatibilized with polypropylene grafted with glycidyl methacrylate (PP-g-GMA) were studied. It was found that the size of the PP domains, tensile and impact strength of ternary blends, and adhesion fracture energy between two layers of PA1010 and PP were all significantly dependent on the PP-g-GMA contents in the PP layer. Correlations between morphology and related properties were sought. The improvements in properties have been attributed to chemical and physical interaction occurring between PA1010 and PP-g-GMA. (C) 1997 Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Series of poly(aryl ether ether ketone ketone) containing meta-phenyl link were synthesized, the general properties were studied by DSC, stretch, impact, etc.. The results indicated that with the raising of meta linkage monomer fractions, the glass transition point decreased, the melting temperature decreased at first, and then disappeared, but for all-meta-linked polymer, T-m appeared once more. And this kind of polymer had good stretch and impact resistance performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of physical aging at 210 degrees C on the mechanical properties of phenolphthalein polyether sulfone (PES-C) and a PES-C/poly(phenylene sulfide) (PPS) blend, with 5% content of PPS, were studied using DMA, tensile experiments, an instrumented impact tester, and SEM observations. The blend shows good mechanical properties in comparison with the corresponding PES-C. The mechanical properties of both materials exhibit characteristics of physical aging, with only the aging rate of the blend relatively slower, which should be attributed to the constraint effect of PPS particles and the good interfacial adhesion. The morphology of the PPS phase in the blend did not change with aging time. The principal role of PPS particles is to induce crazes, which dissipate energy, under applied loading; thus, the blend shows good toughness. On the other hand, the multiple crazing mechanism depends on the molecular mobility or structural state of the matrix. (C) 1996 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal and mechanical properties of phenolphthalein polyethersulfone/poly(phenylene sulfide) (PES-C/PPS) blends were studied using a differential scanning calorimeter, a dynamic mechanical analyzer, and mechanical characterization. The morphologies of fracture surfaces were observed by scanning electron microscopy. The blends are multiphase systems with strong interaction between the two phases. It is of interest that, although the strength and ductility of PPS are lower than those of PES-C, the addition of PPS can improve markedly the impact strength of PES-C without changing its higher strength. The PPS can also act as a flow aid for PES-C. (C) 1995 John Wiley and Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(acrylonitrile-butadiene-styrene), polycarbonate (PC), and two types of antioxidants have been blended by an extruder twin screw. Notched Izod impact strength, tensile property, and melting flow index (MFI) were measured for the blends including diffe