324 resultados para C-13 NMR-SPECTRA
Resumo:
Blends of crystallizable poly(vinyl alcohol) (PVA) with poly(N-vinyl-2-pyrrolidone) (PVPy) were studied by C-13 cross-polarization/magic angle spinning (CP/MAS) n.m.r. and d.s.c. The C-13 CP/MAS spectra show that the blends were miscible on a molecular level over the whole composition range studied, and that the intramolecular hydrogen bonds of PVA were broken and intermolecular hydrogen bonds between PVA and PVPy formed when the two polymers were mixed. The results of a spin-lattice relaxation study indicate that blending of the two polymers reduced the average intermolecular distance and molecular motion of each component, even in the miscible amorphous phase, and that addition of PVPy into PVA has a definite effect on the crystallinity of PVA in the blends over the whole composition range, yet there is still detectable crystallinity even when the PVPy content is as high as 80 wt%. These results are consistent with those obtained from d.s.c. studies.
Resumo:
Here we reported the fatty-acids and their δ 13C values in seep carbonates collected from Green Canyon lease block 185 (GC 185; Sample GC-F) at upper continental slope (water depth: ∼540 m), and Alaminos Canyon lease block 645 (GC 645; Sample AC-E) at lower continental slope (water depth: ∼2200 m) of the Gulf of Mexico. More than thirty kinds of fatty acids were detected in both samples. These fatty acids are maximized at C16. There is a clear even-over-odd carbon number predominance in carbon number range. The fatty acids are mainly composed of n-fatty acids, iso-/anteiso-fatty acids and terminally branched odd-numbered fatty acids (iso/anteiso). The low δ 13C values (−39.99‰ to.32.36‰) of n-C12:0, n-C13:0, i-C14:0and n-C14:0 suggest that they may relate to the chemosynthetic communities at seep sites. The unsaturated fatty acids n-C18:2 and C18:1Δ9 have the same δ 13C values, they may originate from theBeggiatoa/Thioploca. Unlike other fatty acids, the terminally branched fatty acids (iso/anteiso) show lowerδ 13C values (as low as −63.95‰) suggesting a possible relationship to sulfate reducing bacteria, which is common during anaerobic oxidation of methane at seep sites.
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
IEECAS SKLLQG
Resumo:
The cross-section ratios of double-, triple-, quadruple-, and the total multi-electron processes to the single electron capture process sigma(DE)/sigma(SC), sigma(TE)/sigma(SC), sigma(QE)/sigma(SC) and sigma(ME)/sigma(SC)) as well as the relative ratios among reaction channels in double-electron active, triple-electron active and quadruple- electron active are measured in C-13(6+) -Ne collision in the energy region of 4.15-11.08 keV/u by employing position-sensitive and time-of-flight coincident techniques. It is determined that the cross-section ratios sigma(DE)/sigma(SC), sigma(TE)/sigma(SC), sigma(QE)/sigma(SC) and sigma(ME)/sigma(SC) are approximately the constants of 0.20 +/- 0.03, 0.16 +/- 0.04, 0.06 +/- 0.02 and 0.42 +/- 0.05. These values are obviously smaller than the predictions of the molecular Coulomb over-the-barrier model (MCBM) [J. Phys. B 23 (1990) 4293], the extended classical over-the-barrier model (ECBM) [J. Phys. B 19 (1986) 2925] and the semiempirical scaling laws (SL) [Phys. Rev. A 54 (1996) 4127]. However, the relative ratios among partial processes of DE, TE and QE are found to depend on collision energy, which suggests that the collision dynamics depends on the collision velocity. The limitation of velocity-independent character of ECBM, MCBM and SL is undoubtedly shown.