112 resultados para Bone Cell Adhesion, Ion-implanted, Titanium Discs, Argon ions, Adhesion and Proliferation, Osteoblast growth, Cell Adhesion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cowpea mosaic virus (CPMV)-based thin films are biologically active for cell culture. Using layer-by-layer assembly of CPMV and poly(diallyldimethylammonium chloride), quantitatively scalable biomolecular surfaces were constructed, which were well characterized using quartz crystal microbalance, UV-vis and atomic force microscopy. The surface coverage of CPMV nanoparticles depended on the adsorption time and pH of the virus solution, with a greater amount of CPMV adsorption occurring near its isoelectric point. It was found that the adhesion and proliferation of NIH-3T3 fibroblasts can be controlled by the coverage of viral particles using this multilayer technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for efficient laser acceleration of heavy ions by electrostatic shock is investigated using particle-in-cell (PIC) simulation and analytical modeling. When a small number of heavy ions are mixed with light ions, the heavy ions can be accelerated to the same velocity as the light ions so that they gain much higher energy because of their large mass. Accordingly, a sandwich target design with a thin compound ion layer between two light-ion layers and a micro-structured target design are proposed for obtaining monoenergetic heavy-ion beams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion acceleration by ultrashort circularly polarized laser pulse in a solid-density target is investigated using two-dimensional particle-in-cell simulation. The ions are accelerated and compressed by the continuously extending space-charge field created by the evacuation and compression of the target electrons by the laser light pressure. For a sufficiently thin target, the accelerated and compressed ions can reach and exit from the rear surface as a high-density high-energy ion bunch. The peak ion energy depends on the target thickness and reaches maximum when the compressed ion layer can just reach the rear target surface. The compressed ion layer exhibits lateral striation which can be suppressed by using a sharp-rising laser pulse. (c) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a study on the micro-structural changes in GaN due to neon ion implantation using the x-ray diffraction and Raman scattering techniques. An implantation dose of 10(14) cm(-2) was found unable to produce lattice deformation observable by Raman measurements. For higher doses of implantation several disorder activated Raman scattering centers were observed which corroborate the literature. A new dose dependent feature has been recorded at 1595 cm(-1) for higher implantation doses which is suggested to be the vibrational mode of microcavities produced in the lattice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural and magnetic properties of Sm ion-implanted GaN with different Sm concentrations are investigated. XRD results do not show any peaks associated with second phase formation. Magnetic investigations performed by superconducting quantum interference device reveal ferromagnetic behavior with an ordering temperature above room temperature in all the implanted samples, while the effective magnetic moment per Sm obtained from saturation magnetization gives a much higher value than the atomic moment of Sm. These results could be explained by the phenomenological model proposed by Dhar et al. [Phys. Rev. Lett. 94(2005) 037205, Phys. Rev. B 72(2005) 245203] in terms of a long-range spin polarization of the GaN matrix by the Sm atoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct ion beam deposition of carbon films on silicon in the ion energy range of 15-500 eV and temperature range of 25-800-degrees-C has been studied. The work was carried out using mass-separated C+ and CH3+ ions under ultrahigh vacuum. The films were characterized with x-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy, and transmission electron diffraction analysis. In the initial stage of the deposition, carbon implanted into silicon induced the formation of silicon carbide, even at room temperature. Further carbon ion bombardment then led to the formation of a carbon film. The film properties were sensitive to the deposition temperature but not to the ion energy. Films deposited at room temperature consisted mainly of amorphous carbon. Deposition at a higher temperature, or post-deposition annealing, led to the formation of microcrystalline graphite. A deposition temperature above 800-degrees-C favored the formation of microcrystalline graphite with a preferred orientation in the (0001) direction. No evidence of diamond formation in these films was observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A direct ion beam deposition system designed for heteroepitaxy at a low substrate temperature and for the growth of metastable compounds has been constructed and tested. The system consists of two mass-resolved low-energy ion beams which merge at the target with an incident energy range 50-25 000 eV. Each ion beam uses a Freeman ion source for ion production and a magnetic sector for mass filtering. While a magnetic quadrupole lens is used in one beam for ion optics, an electrostatic quadrupole lens focuses the other beam. Both focusing approaches provide a current density more than 100-mu-A/cm2, although the magnetic quadrupole gives a better performance for ion energies below 200 eV. The typical current of each beam reaches more than 0.3 mA at 100 eV, with a ribbon beam of about 0.3-0.5 x 2 cm2. The target is housed in an ultrahigh vacuum chamber with a base pressure of 1 x 10(-7) Pa and a typical pressure of 5 x 10(-6) Pa when a noncondensable beam like argon is brought into the chamber. During deposition, the target can be heated to 800-degrees-C and scanned mechanically with an electronic scanning control unit. The dual beam system has been used to grow GaN using a Ga+ and a N+ beam, and to study the oxygen and hydrogen ion beam bombardment effects during carbon ion beam deposition. The results showed that the simultaneous arrival of two beams at the target is particularly useful in compound formation and in elucidation of growth mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiation hardness of SIMOX(separation by implanted oxygen)/NMOSFET by implanting N and F ion has been carefully studied in this paper.Both N and F ion implantation can reduce hole traps in the buried oxide and the interfacial regions,which consequently improves the radiation hardness,especially under high dose radiation conditions.Moreover,experimental data show that the higher dose of the N and F ion implantation is,the better radiation hardness is achieved.In order to minimize the influence on the threshold voltage of devices,it is important to choose suitable implantation dose and energy of N or F implantation that have smaller impact on the preradiation device performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we report the dependences of infrared luminescence properties of Er-implanted GaN thin films (GaN:Er) on the kinds of substrates used to grow GaN, the growth techniques of GaN, the implantation parameters and annealing procedures. The experimental results showed that the photoluminescence (PL) intensity at 1.54 mum was severely influenced by different kinds of substrates. The integrated PL peak intensity from GaN:Er /Al2O3 (00001) was three and five times stronger than that from GaN:Er /Si (111) grown by molecular beam epitaxy (MBE) and by metalorganic chemical vapor deposition (MOCVD), respectively. The PL spectra observed from GaN:Er/Al2O3 (0001) grown by MOCVD and by MBE displayed a similar feature, but those samples grown by MOCVD exhibited a stronger 1.54 mum PL. It was also found that there was a strong correlation between the PL intensity with ion implantation parameters and annealing procedures. Ion implantation induced damage in host material could be only partly recovered by an appropriate annealing temperature procedure. The thermal quenching of PL from 15 to 300 K was also estimated. In comparison with the integrated PL intensity at 15 K, it is reduced by only about 30 % when going up to 300 K for GaN:Er/Al2O3 sample grown by MOCVD. Our results also show that the strongest PL intensity comes from GaN:Er grown on Al2O3 substrate by MOCVD. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amorphous SiO2 thin films with about 400-500 nm in thickness were thermally grown on single crystalline silicon. These SiO2/Si samples were firstly implanted at room temperature (RT) with 100 keV carbon ions to 2.0 x 10(17),5.0 X 10(17) or 1.2 x 10(18) ions/cm(2), then irradiated at RT by 853 MeV Pb ions to 5.0 x 10(11), 1.0 X.10(12) 2.0 x 10(12) or 5.0 x 10(12) ions/cm(2), respectively. The variation of photoluminescence (PL) properties of these samples was analyzed at RT using a fluorescent spectroscopy. The obtained results showed that Pb-ion irradiations led to significant changes of the PL properties of the carbon ion implanted SiO2 films. For examples, 5.0 x 10(12) Pb-ions/cm(2) irradiation produced huge blue and green light-emitters in 2.0 x 10(17) C-ions/cm(2) implanted samples, which resulted in the appearance of two intense PL peaks at about 2.64 and 2.19 eV. For 5.0 x 10(17) carbon-ions/cm(2) implanted samples, 2.0 x 10(12) Pb-ions/cm(2) irradiation could induce the formation of a strong and wide violet band at about 2.90 eV, whereas 5.0 x 10(12) Pb-ionS/cm(2) irradiation could,create double peaks of light emissions at about 2.23 and 2.83 eV. There is no observable PL peak in the 1.2 x 10(18) carbon-ions/cm(2) implanted samples whether it was irradiated with Pb ions or not. All these results implied that special light emitters could be achieved by using proper ion implantation and irradiation conditions, and it will be very useful for the synthesis of new type Of SiO2-based light-emission materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The X-rays induced during interaction of highly charged argon ions with a beryllium surface are reported. It is found that the K shell X-ray yield of single particle during interaction of hydrogen-like argon ions was 3.6 x 10(-3), which is five orders more than that of heliumlike argon ions. Moreover, due to the screening the 2s electron, no K X-ray was emitted during interaction of lithium-like argon ions with the beryllium surface. It is also found that the X-ray spectrum induced by Ar17+ interacting with residual gases is very different from that induced by Ar17+ interacting with the surfaces, that provided an experimental evidence for the existence of the hollow atoms below the surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human hepatoma and normal liver cells were irradiated with C-12(6+), ion beams (LET= 96.05 keV/mu m) and gamma-rays at Heavy Ion Research Facility in Lanzhou (HIRFL). The chromatid breaks and break types were detected using the premature chromosome condensation technique. Our experimental results showed that chromatid breaks seem to have a good relation with C-12(6+) absorbed dose and C-12(6+) are more effective to induce chromatid breaks as compared to they-rays. For C-12(6+) ion irradiation the major break was isochromatid break, while chromatid breaks were dominant for gamma-ray irradiation. We also observed that the Relative Biology Effectiveness (RBE) of C-12(6+) ion is about 2.5 times higher than that of gamma-rays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we studied the changes in the photoluminescence spectra of the Ar+ ion implanted monocrystalline sapphire annealed at different atmospheres and different temperatures. Single crystals of sapphire (Al2O3) with the (1 0 (1) over bar 0) (m-samples) orientation were implanted at 623 K with 110 keV Ar+ ions to a fluence of 9.5 x 10(16) ions/cm(2). Photoluminescence measurement of the as-implanted sample shows a new emission band at 506 nm, which is attributed to the production of interstitial Al atoms. The intensity of emission band at 506 nm first increased then decreased with increase in annealing temperature. For the same annealing temperature, the intensity of PL peak at 506 nm of the sample annealed in air was higher than the sample annealed in vacuum. The experimental results show that the intensity of the PL peak at 506 nm of Ar-implanted sapphire can be enhanced by subsequent annealing with an enhancement of nearly 20 times. The influence of thermal annealing of the Ar-implanted samples on the new 506 nm emission band was discussed. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to estimate the acute effects of low dose C-12(6+) ions or X-ray radiation on human immune function. The human peripheral blood lymphocytes (HPBL) of seven healthy donors were exposed to 0.05 Gy C-12(6+) ions or X-ray radiation and cell responses were measured at 24 h after exposure. The cytotoxic activities of HPBL were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT); the percentages of T and NK cells subsets were detected by flow cytometry; mRNA expression of interleukin (IL)-2, tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma were examined by real time quantitative RT-PCR (qRT-PCR); and these cytokines protein levels in supematant of cultured cells were assayed by enzyme-linked immunosorbent assays (ELISA). The results showed that the cytotoxic activity of HPBL, mRNA expression of IL-2, IFN-gamma and TNF-alpha in HPBL and their protein levels in supernatant were significantly increased at 24 h after exposure to 0.05 Gy C-12(6+) ions radiation and the effects were stronger than observed for X-ray exposure. However, there was no significant change in the percentage of T and NK cells subsets of HPBL. These results suggested that 0.05 Gy high linear energy transfer (LET) C-12(6+) radiation was a more effective approach to host immune enhancement than that of low LET X-ray. We conclude that cytokines production might be used as sensitive indicators of acute response to LDL (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SiO2-CaO-P2O5 gel bioglass (BG) nanoparticles with the diameter of 40 nm were synthesized by sol-gel approach. The surface of BG nanoparticles was grafted through the ring-open polymerization of the L-lactide to yield poly (L-lactide) (PLLA) grafted gel particle (PLLA-g-BG). The PLLA-g-BG was further blended with poly(lactide-co-glycolide) (PLGA) to prepare the nanocomposites of PLLA-g-BG/PLGA with the various blend ratios of two phases. PLLA-g-BG accounted 10%, 20% and 40% in the composite, respectively. TGA, ESEM and EDX were used to analyze the graft ratio of PLLA-g-BG, the dispersion of nano-particles and the surface elements of the composites respectively. The rabbit osteoblasts were seeded and cultured on the thin films of composites in vitro. The cell adhesion, spreading and growth of osteoblasts were analyzed with FITC staining, NIH Image J software and MTT assay. The change of cell cycle was monitored by flow cytometry (FCM). The results demonstrated that the Surface modification of BG with PLLA could significantly improve the dispersing of the particles in the matrix of PLGA. The nanocomposite with 20% PLLA-g-BG exhibited superior surface properties, including roughness and plenty of silicon, calcium and phosper, to enhance the adhesion, spreading and proliferation of osteoblasts.