83 resultados para BPE-RPC conjugate
Resumo:
By using AuNP-modified homo-adenine DNA conjugate as a model system, simple colorimetric and resonance Rayleigh scattering assays have been developed for screening small molecules that trigger the formation of the non-Watson-Crick homo-adenine duplexes. The assay presented here is more simplified in format as it involves only one type of ssDNA modified Au-NP, and can be easily adapted to high-throughput screening.
Resumo:
Novel biodegradable poly(carbonate ester)s with photolabile protecting groups were synthesized by ring-opening copolymerization Of L-lactide (LA) with 5-methyl-5-(2-nitro-benzoxycarbonyl)-1,3-dioxan-2-one (MNC) with diethyl zinc (Et2Zn) as catalyst. The poly(L-lactide-co-5-methyl-5-carboxyl-1,3-dioxan-2-one) (P(LA-co-MCC)) was obtained by UV irradiation Of poly(L-lactide acid-co-5-methyl-5-(2-nitro-benzoxycarbonyl)-1,3-dioxan-2-one) (P(LA-co-MNC)) to remove the protective 2-nitrobenzyl group.
Resumo:
Arabinogalactan derivatives conjugated with gad olinium-diethylenetriaminepentaacetic acid (Gd-DTPA) by ethylenediamine (Gd-DTPA-CMAG-A(2)) or hexylamine (Gd-DTPA-CMAG-A(6)) have been synthesized and characterized by means of Fourier transform infrared spectra (FTIR), C-13 nuclear magnetic resonance (C-13 NMR), size exclusion chromatography (SEC), and inductively coupled plasma atomic emission spectrometry (ICP-AES).
Resumo:
NaYF4:Yb3+, Er3+ nanoparticles were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. After being functionalized with SiO2-NH2 layer, these NaYF4:Yb3+, Er3+ nanoparticles can conjugate with activated avidin molecules (activated by the oxidation of the oligosaccharide chain). The as-formed NaYF4:Yb3+, Er3+ nanoparticles, NaYF4:Yb3+, Er3+ nanoparticles functionalized with amino groups, avidin conjugated amino-functionalized NaYF4:Yb3+, Er3+ nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transform infrared (FT-IR), UV/Vis absorption spectra, and up-conversion luminescence spectra, respectively.
Resumo:
NaYF4:Yb3+, Er3+ nanoparticles were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. After being functionalized with SiO2-NH2 layer, these NaYF4:Yb3+, Er3+ nanoparticles can conjugate with activated avidin molecules (activated by the oxidation of the oligosaccharide chain). The as-formed NaYF4:Yb3+, Er3+ nanoparticles, NaYF4:Yb3+, Er3+ nanoparticles functionalized with amino groups, avidin conjugated amino-functionalized NaYF4:Yb3+, Er3+ nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transform infrared (FT-IR), UV/Vis absorption spectra, and up-conversion luminescence spectra, respectively. The biofunctionalization of the NaYF4:Yb3+, Er3+ nanoparticles has less effect on their luminescence properties, i.e., they still show the up-conversion emission (from Er3+, with S-4(3/2) -> I-4(15/2) at similar to 540 nm and F-4(9/2) -> I-4(15/2) at similar to 653 nm), indicative of the great potential for these NaYF4:Yb3+, Er3+ nanoparticles to be used as fluorescence probes for biological system.
Resumo:
A facile and convenient synthesis of dihydropyranones has been developed by a formal [4+2] annulation of readily available alpha-acetyl ketene S,S-acetals with various aldehydes, involving a tandem aldol reaction and conjugate addition-elimination reaction, in the presence of NaOH in water.
Resumo:
Paclitaxel-loaded poly(ethylene glycol)-b-poly(L-lactide (LA)) (PEG-PLA) micelles were prepared by two methods. One is physical encapsulation of paclitaxel in micelles composed of a PEG-PLA block copolymer and the other is based on a PEG-PLA-paclitaxel conjugate, abbreviated as "conjugate micelles" Their physicochemical characteristics, e.g. critical micelle concentration (CMC), morphology, and micelle size distribution were then evaluated by means of fluorescence spectroscopy, scanning electron microscopy (SEM), and dynamic light scattering (DLS). The results show that the CMC of PEG-PLA-paclitaxel and PEG-PLA are 6.31 x 10(4) and 1.78 x 10(-3) g L-1, respectively. Both micelles assume a spherical shape with comparable diameters and have unimodal size distribution. Moreover, in vitro drug delivery behavior was studied by high performance liquid chromatography (HPLC). The antitumor activity of the paclitaxel-loaded micelles against human liver cancer H7402 cells was evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method.
Resumo:
A polymeric gene carrier was developed to deliver vascular endothelial growth factor (VEGF) small interfering RNA (siRNA) for prostate cancer cells in a target-specific manner. Prostate cancer-binding peptide (PCP) was conjugated with polyethylenimine (PEI) via a poly(ethylene glycol) (PEG) linker (PEI-PEG-PCP). The PEI-PEG-PCP conjugate could effectively condense siRNA to form stable polyelectrolyte complexes (polyplexes) with an average diameter of approximately 150 nm in an aqueous solution. VEGF siRNA/PEI-PEG-PCP polyplexes exhibited significantly higher VEGF inhibition efficiency than PCP-unmodified polycationic carriers (PEI-PEG or PEI) in human prostate carcinoma cells (PC-3 cells). The enhanced gene silencing activity of VEGF siRNA/PEI-PEG-PCP was maintained even under serum conditions, owing to the steric stabilization of the polyplexes with hydrophilic PEG grafts. Confocal microscopic studies revealed that the siRNA/PEI-PEG-PCP polyplexes were delivered into PC-3 cells in a PCP ligand-specific manner.
Resumo:
Docetaxel (DX) is one of the most effective antineoplastic drugs. Its current clinical administration is limited because of its hydrophobicity and Serious side effects. A polymer/DX conjugate is designed and successfully prepared to solve these problems. It is monomethoxy-poly(ethylene glycol)-block-poly(L-lactide)/DX (MPEG-PLLA/DX) It was synthesized by reacting DX with carboxyl-terminated copolymer MPEG-PLLA, which was prepared by reacting succinic anhydride with hydroxyl-terminated copolymer monomethoxy-poly(ethylene glycol)-block-poly (L-lactide) (MPEG-PLLA). Its structure and molecular weight was confirmed by H-1 NMR and GPC. The MPEG-PLLA/DX micelles in aqueous solution were prepared Using a SO]vent displacement method and characterized by dynamic light scattering for size and size distribution, and by transmission electron microscopy for surface morphology. Its antitumor activity against HeLa cancer cells evaluated by MTT assay showed that it had a similar antitumor activity to Pure D at the same drug content.
Resumo:
The asymmetric Michael addition of aldehydes to nitroolefins was investigated using L-prolinamide derivatives of 2-(2'-piperidinyl)pyridine as catalyst and a variety of phenols as co-catalyst. Extensive screening toward the effect of prolinamides, phenols, and solvents on this transformation revealed that a combination of (S)-2-(2'-piperidinyl)pyridine-derived trans-4-hydroxy-L-prolinamide 2c, (S)-1,1'-bi-2-naphthol, and dichloromethane was a promising system. This system was shown to be amenable to a rich variety of aldehydes and nitroolefins and afforded the nitroaldehyde products with excellent yield, enantiomeric excess (up to 99%) and diastereoselectivity ratio (up to 99/1), even in the case of 1 mol % catalyst loading and 1.5 equiv of aldehydes.
Resumo:
M2B5O9X: Re(M = Ca, Sr, Ba; X = Cl, Br; Re = Eu, Th) phosphors were synthesized via solid state method. The products were characterized with X-ray powder diffraction and luminescence spectrometer. The luminescent properties as well. as the influences of the matrix composition and other doping ions on the luminescence of the rare earth ions of the co-doped phosphors were investigated. The coexistence of Eu3+, Eu2+ and Th3+ were observed in these matrices. The phenomenon may be explained by the electron transfer theory. The sensitization of Ce3+ ion improves the intensity of emission of Eu2+, and Tb3+. The competition between electron transfer among conjugate rare earth ions and energy migration might be the reasons for the observation. We predict a novel trichromatic phosphor co-doped with Eu3+ Tb3+ in M2B5O9X.
Resumo:
3-[Bis(ethylthio)methylene]pentane-2,4-dione (1a) and 3-[bis(benzylthio)methylene]pentane-2,4-dione (1b) have been investigated as non-thiolic and odorless thiol equivalents in thia-Michael addition reactions. In the presence of aqueous p-dodecyl benzenesulfonic acid (DBSA), compound (1) was cleaved and the generated thiols underwent facile conjugate addition to alpha,beta-unsaturated ketones 2 in-situ, affording the corresponding beta-keto sulfides (3) in good yields.
Resumo:
A triblock poly(lactic acid)-b-poly(ethylene glycol)-b-poly(lactic acid) (PLA-PEG-PLA)/paclitaxel (PTX) conjugate was synthesized by the reaction of carboxyl-terminated copolymer PLA-PEG-PLA with PTX in the presence of dicyclohexylcarbodiimide and dimethylaminopyridine. Carboxyl-terminated copolymer PLA-PEG-PLA was prepared by the reaction of the hydroxyl end groups in copolymer PLA-PEG-PLA with succinic anhydride. Its structure was confirmed by NMR and gel permeation chromatography. The PLA-PEG-PLA/PTX conjugates could self-assemble into micelles in aqueous solutions with a low critical micelle concentration. Dynamic light scattering and environmental scanning electron microscopy analyses of the PLA-PEG-PLA/PTX micelles revealed their spherical structure and size of 220 nm. The antitumor activity of the conjugate against woman Hela cancer cells, evaluated by the 3-(4,5-dimethylthiazol2-yl)-2,5-diphenyl tetrazolium bromide method, showed that the conjugates had an antitumor activity similar to that of pure PTX. The obtained PLA-PEG-PLA/PTX conjugates are expected to be used in clinical practice.
Resumo:
The reaction of Cu(BF4)(2) with pyridine-2,6-dicarboxylic acid (H(2)pydc) and trans-1,2-bis(4-pyridyl)ethylene (bpe) under hydrothermal conditions afforded a porous mixed-valence (CuCuII)-Cu-I coordination polymer. Coexistence of tetrameric and decameric water clusters within the channels of the complex leads to a novel water chain. The metal-organic framework provides both hydrophilic and hydrophobic environments for stabilizing the clusters and retains its integrity upon dehydration and rehydration.