58 resultados para Axial fatigue
Resumo:
In order to reduce the influence of the stray electric field of the buncher in the axial injection system of SFC and to improve the injection efficiency of SFC, the existing buncher electrode is investigated and a new electrode is designed. The influences of the electric field to the beams for the both cases are simulated. The simulation results show that the bunching efficiency is improved from 55% to 74% with the new electrode. At the same time, the influence of the space charge is computed and according to the results, the location of the buncher is readjusted too.
Resumo:
A new axial beam injection system is designed and being constructed at the HIRFL. It consists of 2 GLASSER lenses, 1 dipole, 5 quadrupoles and 3 solenoids. There are two beam line branches for 14.5GHz ECR ion source and 18.5GHz super conducting ECR ion source. Both transverse and longitudinal beam optics are improved in contrast with the old one. The layout, beam optics calculation results and further improved design are given.
Resumo:
The axial charges of the proton and N(1440) are studied in the framework of an extended constituent quark model (CQM) including qqqq (q) over bar components. The cancellation between the contributions of qqq components and qqqq (q) over bar components gives a natural explanation to the experimental value of the proton axial charge, which can not be well reproduced in the traditional CQM even after the SU (6) circle times O(3) symmetry breaking is taken into account. The experimental value of axial charge pins down the proportion of the qqqq (q) over bar component in the proton to about 20%, which is consistent with the ones given by the strong decay widths and helicity amplitudes. Besides, an axial charge for N(1440) about 1 is predicted with 30% qqqq (q) over bar component, which is obtained by the strong and electromagnetic decays.
Resumo:
A series of single-component cobalt salen complexes, N,N'-bis(salicylidene)-1,2phenylenediamino cobaltIII X(X = Cl (1a), Br (1b), NO3 (1c), CF3COO (1d), BF4 (le), and N3 (If)) (SalphCoX), were prepared for alternating copolymerization of carbon dioxide and propylene oxide(PO) under mild condition. The axial anion X group of the SalenphCoX played important role in tailoring the catalytic activity, polymeric/cyclic carbonate selectivity, as well as stereochemistry of carbonate unit sequence in the polymer chain. SalenphCoX with an electron-withdrawing axial X group (complex 1c) was an ideal catalyst for the copolymerization of CO2 and PO to selectively produce polycarbonate with similar to 99% carbonate linkage and over 81% head-to-tail structure.
Resumo:
The electrochemistry of (TPP)Co in the presence of pyridine was investigated in dichloroethane solution by cyclic voltammetry. With the addition of pyridine to the solution, the reduction peaks of the axial complex compounds, (TPP)Co(III)(Py) and (TPP)Co(III)(Py)(2) were observed. It was found that the reduction peak of Co(II)/Co(I) shifted to about -1.20V (SCE) with the increase of added pyridine. The new reduction peak may be attributed to the direct reduction of the axially complex (TPP)Co(II)(Py).
Resumo:
Flexural fatigue tests were conducted on injection-molded short fiber composites, carbon fiber/poly(phenylene ether ketone) (PEK-C) and glass fiber/PEK-C (with addition of polyphenylene sulfide for improving adhesion between matrix and fibers), using four-point bending at stress ratio of 0.1. The fatigue behavior of these materials was presented. By comparing the S-N curves and analyzing the fracture surfaces of the two materials, the similarity and difference of the failure mechanisms in the two materials were discussed. It is shown that the flexural fatigue failure of the studied materials is governed by their respective tensile properties. The matrix yielding is main failure mechanism at high stress, while at lower stress the fatigue properties appear fiber and interface dominated. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The present work investigates the effects of cyclic fatigue loading on the residual properties of an injection-molded composite, carbon-fiber-reinforced poly(phenylene ether ketone) (CF/PEK-C), and damage development in this material under fatigue lending. Test specimens, which had been conditioned to various preselected fatigue damage stages, were measured for their residual properties. The results indicated that cyclic fatigue loading alters the constitutive behavior of the injection-molded composite, especially in the non-linear portion of the stress/strain curve. The residual strength decreases with increase in the number of fatigue cycles as a consequence of the accumulation of fatigue damage, which is dominated by the growth of microcracks. While the residual modulus increases slightly with cyclic fatigue loading, this is probably due to the oriented hardening resulting from creep deformation which is induced during cyclic loading. (C) 1997 Elsevier Science Limited.
Resumo:
The axial coordination effect of F- on the redox behavior of (TPP)Co was investigated and spectroeletrochemistry in dichloroethane. It was verified that mono(F-) axial adduct (TPP)Co(II)(F-) could be reduced at 0.1 V(SCE). and bis(F-) axis adduct (TPP)Co(II)(F-)(2) formed with added F- molar ratio>1 could be reduced at the potential <-0.6 V(SCE). The equilibrium between (TPP)Co(II)(F-) and (TPP)Co(II)(F-)(2) was demonstrated.
Resumo:
Tension-tension fatigue tests were conducted on unnotched injection moulded poly(phenylene ether ketone) (PEK-C) specimens with two stress ratios, R. The fatigue behaviour of this material is described. The S-N curves (S = alternating stress, N = number of cycles to failure) for different R values have the same general shape, but the curve for bigger R is shifted to long cycles. A fatigue lifetime inversion is observed from constructed S-N curves. Examinations of failure surfaces and analyses of the fatigue data reveal that the fatigue failure mechanism of the material studied is crack growth dominated. But the manner of the fatigue crack initiation and propagation depends on the maximum cyclic stress applied. At higher stresses, the fatigue crack originates at the corner of the specimen and propagates inward; at lower stresses, the fatigue crack nucleates at an internal flaw of the specimen and propagates outward. The fatigue lifetime inversion corresponds to the transition of crack initiation and propagation from one mode to the other. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
Flexural fatigue tests were performed on an injection-moulded glass-fiber reinforced blend of polyphenylene ether ketone and polyphenylene sulfide composite using four-point bending at a series of fixed mean stress levels with varying stress amplitude. Attention was given to identifying the effects of mean stress and stress amplitude on the fatigue life and failure mechanisms. It was found that the fatigue life of the studied material decreased sharply with increasing stress amplitude at a constant mean stress level and also decreased at a fixed stress amplitude with increasing mean stress. However, analyses of the fatigue data and failure behaviour reveal that, for the studied material, fatigue failure mechanisms depend on the relative importance of mean stress and stress amplitude. At a mean stress level of 80% ultimate flexural strength, the failure results from accumulation of creep strain, while at mean stress levels of 40%, 50% and 60% ultimate flexural strength, the magnitude of stress amplitude influences the type of failure mechanism. As stress amplitude is reduced, the fatigue failure mechanism changes from matrix yielding dominated to crack growth dominated fracture.
Resumo:
The glass sponge Monorhaphis chuni (Porifera: Hexactinellida) forms the largest bio-silica structures on Earth; their giant basal spicules reach sizes of up to 3 m and diameters of 8.5 mm. Previously, it had been shown that the thickness growth proceeds by appositional layering of individual lamellae; however, the mechanism for the longitudinal growth remained unstudied. Now we show, that the surface of the spicules have towards the tip serrated relief structures that are consistent in size and form with the protrusions on the surface of the spicules. These protrusions fit into the collagen net that surrounds the spicules. The widths of the individual lamellae do not show a pronounced size tendency. The apical elongation of the spicule proceeds by piling up cone-like structural units formed from silica. As a support of the assumption that in the extracellular space silicatein(-like) molecules exist that associate with the external surface of the respective spicule immunogold electron microscopic analyses were performed. With the primmorph system from Suberites domuncula we show that silicatein(-like) molecules assemble as string- and net-like arrangements around the spicules. At their tips the silicatein(-like) molecules are initially stacked and at a later stay also organized into net-like structures. Silicatein(-like) molecules have been extracted from the giant basal spicule of Monorhaphis. Applying the SDS-PAGE technique it could be shown that silicatein molecules associate to dimers and trimers. Higher complexes (filaments) are formed from silicatein(-like) molecules, as can be visualized by electron microscopy (SEM). In the presence of ortho-silicate these filaments become covered with 30-60 nm long small rod-like/cuboid particles of silica. From these data we conclude that the apical elongation of the spicules of Monorhaphis proceeds by piling up cone-like silica structural units, whose synthesis is mediated by silicatein(-like) molecules. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Experiments on the corrosion fatigue behaviour of welded joints of the steel for marine platform in air and seawater, and of the joints in seawater with cathodic protection, yielded data for linear regression to obtain fatigue life curves (Delta S-N-f). The laws of corrosion fatigue in welded joints of test steel are discussed with reference to those of A(587) and A(131) steel. In these experiments, the fatigue damage occurring at all welded joints around the weld interface resulted in the cracks and fractures. The fatigue life of the specimens in seawater with cathodic protection is longer than that in seawater Without protection.