76 resultados para Acting.
Resumo:
It has been found that charge compensated CaMoO4:Eu3+ phosphors show greatly enhanced red emission under 393 and 467 nm-excitation, compared with CaMoO4:Eu3+ without charge compensation. Two approaches to charge compensation, (a) 2Ca(2+) -> EU3+ + M+, where M+ is a monovalent cation like Li+, Na+ and K+ acting as a charge compensator; (b) 3Ca(2+) -> 2EU(3+) + vacancy, are investigated. The influence of sintering temperature and Eu3+ concentration on the luminescent property of phosphor samples is also discussed.
Resumo:
With the presence of biopolymer-sodium alginate as additive, Eu-doped ZnO (zinc oxide) urchins consisting of nanorods were synthesized through a hydrothermal route. X-ray diffraction pattern makes evident the absence of phase other than wurtzite ZnO. Upon excited by 325 nm xenon laser, such nanostructured Eu-doped ZnO urchins emit white light, which originates from the luminescence of ZnO and the intra-4f transitions of Eu3+ ions. Besides acting as stabilizing agent, sodium alginate may also sensitize the Eu3+ ions in the nanostructures and facilitate the energy transfer from the host to Eu3+ ions. (c) 2006 American Institute of Physics.
Resumo:
We developed a reproducible, noncovalent strategy to functionalize multiwalled carbon nanotubes (MWNTs) via embedding nanotubes in polysiloxane shells. (3-Aminopropyl)triethoxysilane molecules adsorbed to the nanotube surfaces via hydrophobic interactions are polymerized simply by acid catalysis and form a thin polysiloxane layer. On the basis of the embedded MWNTs, negatively charged gold nanoparticles are anchored to the nanotube surfaces via electrostatic interactions between the protonated amino groups and the gold nanoparticles. Furthermore, these gold nanoparticles can further grow and magnify along the nanotubes through heating in HAuCl4 aqueous solution at 100 degrees C; as a result these nanoparticles are joined to form continuous gold nanowires with MWNTS acting as templates.
Resumo:
In bacteriophage, transcription elongation is regulated by the N protein, which binds a nascent mRNA hairpin ( termed boxB) and enables RNA polymerase to read through distal terminators. We have examined the structure, energetics and in vivo function of a number of N boxB complexes derived from in vitro protein selection. Trp18 fully stacks on the RNA loop in the wild-type structure, and can become partially or completely unstacked when the sequence context is changed three or four residues away, resulting in a recognition interface in which the best binding residues depend on the sequence context. Notably, in vivo antitermination activity correlates with the presence of a stacked aromatic residue at position 18, but not with N boxB binding affinity. Our work demonstrates that RNA polymerase responds to subtle conformational changes in cis-acting regulatory complexes and that approximation of components is not sufficient to generate a fully functional transcription switch.
Resumo:
A series of strong solid acids composed of WO3/ZrO2 were prepared. Their crystal structure, surface state, and acidity were determined by the methods of X-ray diffraction, thermal gravimetric and differential thermal analysis, temperature-programmed reduction, laser Raman, and acidity measurement. The results revealed that ZrO2 in WO3/ZrO2 existed mainly in the tetragonal phase, the addition of WO3 plays an important role in stabilizing the tetragonal phase of ZrO2, and all of the samples possessed large surface areas. WO3 in WO3/ZrO2 is mainly monolayer dispersed, and a small amount crystallized on the ZrO2 surface and partly reacted with ZrO2 to form the bond of Zr-O-W, acting as the strong solid acid center. The catalytic properties of WO3/ZrO2 strong solid;acids for alkylation of isobutane with butene at different conditions were investigated. They had a better reaction performance than other strong solid acids; a parallel relationship could be drawn between the catalytic activity and the acid amounts as well as the acidic strength of the catalysts.
Resumo:
Two new compounds, [CoL2(H2O)(2)](NO3)(2). 8H(2)O (1) and [CoL(H2O)(2)(CH3CO2)(2)]. H2O (2), were obtained from self-assembly of the corresponding metal salts with 1,1'-(1,4-butanediyl)bis(benzimidazole) (L). In 1, each cobalt ion is coordinated to four nitrogen atoms from four molecules of L, and to two water molecules. Metal ions are bridged by L ligands to form infinite (4, 4) networks that contain 44-membered rings. The (4, 4) networks of 1 stack in a parallel fashion, resulting in the formation of large channels in the material. In 2, each cobalt ion is coordinated to two N atoms from two L molecules, two water molecules and two carboxylate O atoms from two acetate anions. Each L molecule is coordinated to two cobalt ions, acting as a bridging ligand as in 1. The bridged cobalt ions form an infinite zigzag chain structure.
Resumo:
Three new compounds, [ZnL1.5(H2O)(SO4)]. 6H(2)O 1, [ZnL1.5(H2O)(2)][NO3](2). 2H(2)O 2 and [CdL1.5(H2O)(2)(SO4)]. 4H(2)O 3 were obtained from self-assembly of the corresponding metal salts with 1,1'-(1,4-butanediyl)bis(imidazole) (L). In both 1 and 2 zinc ion is five-co-ordinated, showing a less-common trigonal bipyramidal co-ordination polyhedron, while cadmium ion of 3 is six-co-ordinated with a common octahedral arrangement. The sulfate ions of 1 and 3 are co-ordinated, however the nitrate ions of 2 are not. Each of the three compounds is composed of a (6, 3) network with the hexagonal smallest circuit containing six metal ions and six L; each L is co-ordinated to two metal ions, acting as a bridging ligand. In 1 the 2-D sheet of (6, 3) networks is interpenetrated in an inclined mode by symmetry related, identical sheets to give an interlocked 3-D structure, while the (6, 3) networks of both 2 and 3 stack in a parallel fashion to construct frameworks having channels.
Resumo:
Nine triphenyltin - 2 - (1,2 - ethylenedithio) methylene - 3 - oxo - 5 - aryl - 4 - pentenicates were synthesized. The crystal structure of the title compound 3b (C33H28O3S2Sn) was determined by X - ray diffraction analysis. The crystal belongs to triclinic system, space group P(1)overbar with a = 0.9074 (2) nm, b = 1.6809(3)nm, c = 2.1834(4)nm, alpha =77.57(3)degrees, beta = 88.04(3)degrees, gamma = 89.47(3)degrees, V = 3.2503nm(3), Z = 2, R = 0.0592. In crystal of 3b, there exist intramolecular 0-Sn coordination bonds, with carboxylate group acting as a bidentate ligand: Sn(1)-0(1) = 0.2086(5) and Sn(1)-0(2) = 0.2594nm, having a deformed trigonal bipyramidal geometry.
Resumo:
Conversion of thyroxine (T-4) to 3,5,3'-triiodothyronine is an essential first step in controlling thyroid hormone action. Type I deiodinase (DI) can catalyze the conversion to produce the bulk of serum 3,5,3'-triiodothyronine. Acting as a mimic of DI, a selenium-containing catalytic antibody (Se-4C5) prepared by converting the serine residues of monoclonal antibody 4C5 raised against T4 into selenocysteines, can catalyze the deiodination of T4 with dithiothreitol (DTT) as cosubstrate. The mimic enzyme Se-4C5 exhibited a much greater deiodinase activity than model compound ebselen and another selenium-containing antibody Se-Hp4 against GSH. The coupling of selenocysteine with the combining pocket of antibody 4C5 endowed Se-4C5 with enzymatic activity. To probe the catalytic mechanism of the catalytic antibody, detailed kinetic studies were carried out in this paper. Investigations into the deiodinative reaction revealed the relationship between the initial velocity and substrate concentration. The characteristic parallel Dalziel plots demonstrated that Se-4C5-catalyzed reaction mechanism was ping-pong one, involving at least one covalent enzyme intermediate. The kinetic properties of the catalytic antibody were similar to those of DI, with K-m values for T-4 and DTT of approximately 0.8 muM and 1.8 muM, respectively, and a V-m value of 270 pmol per mg of protein per min. The activity could be sensitively inhibited by 6-propyl-2-thiouracil (PTU) with a K-i value of similar to 120 muM at 2.0 muM T-4 concentration. The PTU inhibition was progressively alleviated with the increasing concentration of added DTT, revealing that PTU was a competitive inhibitor for DTT.
Resumo:
Acting as a mimic of type I deiodinase (DI), a selenium-containing catalytic antibody (Se-4C5) prepared by converting the serine residues of monoclonal antibody 4C5 raised against thyroxine (T-4) into selenocysteines, can catalyze the deiodination of T-4 to 3,5,3'-triiodothyronine (T-3) with dithiothreitol (DTT) as cosubstrate. Investigations into the deiodinative reaction by Se-4C5 revealed the relationship between the initial velocity and substrate concentration was subjected to Michaelis-Menten equation and the reaction mechanism was ping-pong one. The kinetic properties of the catalytic antibody were a little similar to those of DI, with K-m values for T-4 and DTT of approximately 0.8 muM and 1.8 mM, respectively, and V-m value of 270 pmol per mg protein per min. The activity could be sensitively inhibited by PTU with a K-i value of approximately 120 muM at 2.0 muM of T-4 concentration, revealing that PTU was a competitive inhibitor for DTT, (C) 2001 Academic Press.
Resumo:
Nanometer-scale plowing friction and wear of a polycarbonate thin film were directly measured using an atomic force microscope (AFM) with nanoscratching capabilities. During the nanoscratch tests, lateral forces caused discrepancies between the maximum forces for the initial loadings prior to the scratch and the unloading after the scratch. In the case of a nanoscratch test performed parallel to the cantilever probe axis, the plowing friction added another component to the moment acting at the cantilevered end compared to the case of nanoindentation, resulting in an increased deflection of the cantilever. Using free-body diagrams for the cases of nanoindentation and nanoscratch testing, the AFM force curves were analyzed to determine the plowing friction during nanoscratch testing. From the results of this analysis, the plowing friction was found to be proportional to the applied contact force, and the coefficient of plowing friction was measured to be 0.56 +/- 0.02. Also, by the combination of nanoscratch and nanoindentation testing, the energetic wear rate of the polycarbonate thin film was measured to be 0.94 +/- 0.05 mm(3)/(N m).
Resumo:
Three organoselenium-containing derivatives of beta-cyclodextrins (beta-CD), mono-6-benzylseleno-6-deoxy-beta-cyclodextrin (compound 1), 6,6'-trimethylenediseleno bridged beta-cyclodextrin dimer(compound 2) and 6,6'- (o-phenylene)diseleno bridged beta-cyclodextrin dimer (compound 3) functioned as mimics of selenium-containing glutathione peroxidase(SeGPX). Acting on H2O2 and GSH, the SeGPX activities of these compounds were 0.83-, 0.26-, and 1. 23-fold of that of Ebselen (0.99 U/mu mol), respectively. The relationship between the structure and the function of these compounds was studied. The results suggested that the hydrophobicity and rigidity of phenyl group is the main reason that accounted for the higher activity of compounds 3 and 1. Phenyl group not only provided the hydrophobic circumstance which is necessary for the catalytic function of selenium, but also make it possible that the cyclodextrin unit of compounds 1 and 3 combines the substrate with a more effective direction. Fluorometric techniques were utilized to determine the yields of the hydroxyl radical produced by Fenton reactions through the formation of hydroxy benzoic acids from benzoate. Compared with Ebselen which showed a significant inhibition effect on the formation of HO., these organoselenium-containing cyclodextrins showed a little scavenging effect on the formation of HO. throughout the whole process.
Resumo:
Thymidylate synthase (TS), which catalyzes the de novo synthesis of dUMP, is an important target for cancer therapy. In this report, the effects of 5-fluorouracil (5-FU) and ZD1694 on the regulation of TS gene expression were evaluated in zebrafish embryos. Our results revealed that the expression of TS was increased by about six-fold when embryos were treated with 1.0 mu M 5-FU and there was a greater than 10-fold increase in the TS protein level after treatment with 0.4 mu M ZD1694. Northern blot analysis confirmed that expression of TS mRNA was identical in treated or untreated embryos. Gel shift and immunoprecipitation assays revealed that zebrafish TS was specifically bound with its cognate mRNA in vitro and in vivo. We identified a 20 nt RNA sequence, TS:N20, localized to the 5'-UTR of TS mRNA, which corresponded to nt 13-32; TS:N20 bound to the TS protein with an affinity similar to that of the full-length TS mRNA. The MFold program predicted that TS:N20 formed a stable stem-loop structure similar to that of the cis-acting element found in human TS mRNA. Variant RNAs with either a deletion or mutation in the core motif of TS:N20 were unable to bind to the TS protein. In vitro translation experiments, using the rabbit lysate system, confirmed that zebrafish TS mRNA translation was significantly repressed when an excess amount of TS protein was included in the system. Additionally, a TS stability experiment confirmed that treatment of zebrafish embryos with 5-FU could increase the TS stability significantly, and the half life of TS protein was about 2.7 times longer than in untreated embryos. Our study revealed a structural requirement for the interaction of TS RNA with TS protein. These findings also demonstrated that the increase in TS protein induced by 5-FU occurs at the post-transcriptional level and that increased stability and translation efficiency both contributed to the increase in TS protein levels induced by TS inhibitors.
Resumo:
Thymidylate synthase (TS), which catalyzes the de novo synthesis of dUMP, is an important target for cancer therapy. In this report, the effects of 5-fluorouracil (5-FU) and ZD1694 on the regulation of TS gene expression were evaluated in zebrafish embryos. Our results revealed that the expression of TS was increased by about six-fold when embryos were treated with 1.0 mu M 5-FU and there was a greater than 10-fold increase in the TS protein level after treatment with 0.4 mu M ZD1694. Northern blot analysis confirmed that expression of TS mRNA was identical in treated or untreated embryos. Gel shift and immunoprecipitation assays revealed that zebrafish TS was specifically bound with its cognate mRNA in vitro and in vivo. We identified a 20 nt RNA sequence, TS:N20, localized to the 5'-UTR of TS mRNA, which corresponded to nt 13-32; TS:N20 bound to the TS protein with an affinity similar to that of the full-length TS mRNA. The MFold program predicted that TS:N20 formed a stable stem-loop structure similar to that of the cis-acting element found in human TS mRNA. Variant RNAs with either a deletion or mutation in the core motif of TS:N20 were unable to bind to the TS protein. In vitro translation experiments, using the rabbit lysate system, confirmed that zebrafish TS mRNA translation was significantly repressed when an excess amount of TS protein was included in the system. Additionally, a TS stability experiment confirmed that treatment of zebrafish embryos with 5-FU could increase the TS stability significantly, and the half life of TS protein was about 2.7 times longer than in untreated embryos. Our study revealed a structural requirement for the interaction of TS RNA with TS protein. These findings also demonstrated that the increase in TS protein induced by 5-FU occurs at the post-transcriptional level and that increased stability and translation efficiency both contributed to the increase in TS protein levels induced by TS inhibitors.
Resumo:
The unicellular green alga Haematococcus pluvialis accumulates a highly valuable ketocarotenoid, astaxanthin, under various environmental stresses. beta-carotene ketolase (BKT) plays a key role in astaxanthin biosynthesis in H. pluvialis. In this paper, an approximate 700 bp 5'-flanking region of the bkt gene containing a putative promoter was cloned through walking upstream. The results of the sequence analysis showed that this bkt 5'-flanking region might have cis-acting elements such as sterol regulatory element (SRE-1)-like motifs, the C-repeat/dehydration responsive element (DRE) and al-3 proximal element (APE)-like motifs, except for typical TATA and CCAAT boxes. The results of the P-galactosidase assay and the transient expression of lacZ driven by a series of sequential deletions revealed that a minimal promoter-like region might exist from -630 to -408 bp, and the highest promoter activity was observed to span the positions from -630 to -308 bp. The results of the site-directed mutagenesis of a C-repeat/DRE and two APE-like motifs in a promoter-like region (-630 to -308 bp) suggested that two APE-like motifs might be essential for transcriptional control of the bkt gene.