239 resultados para Absorption spectrum
Resumo:
The polyetherketone (PEK-c) guest-host polymer films doped with (4'-nitro)-3-azo-9-ethyl-carbazole (NAEC) were prepared. The films were poled by corona-onset poling at elevated temperature (COPET). The orientational order parameter of the chromophores NAEC in poled polymer film was determined by measuring the absorption spectra of the films before and after being poled. By using the two-level model, the measured dispersion of the refractive index of the polymer film, and the dispersion of the first hyperpolarizability of chromophore NAEC, the dispersion of the macroscopic second-order nonlinear optical (NLO) and linear electrooptic (EO) coefficients was evaluated for the NAEC/PEK-c guest-host polymer film. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
CdS/ZnS core/shell nanocrystals were prepared from an aqueous/alcohol medium. A red shift of the absorption spectrum and an increase of the room temperature photoluminescence intensity accompanied shell growth.
Resumo:
CdS nanoparticies were prepared in air and their stability by air annealing was studied. A small change in crystal structure and particle size was observed by air annealing, but a rapid reduction in fluorescence was found. Through investigation, it is revealed that it is the surface change or reconstruction rather than the variation of the size or structure that decreases the fluorescence. The emission of the particles consists with two peaks which are dependent on the excitation energy. The two peaks are considered to be arisen from "two" different sizes of nanoparticles and may be explained in terms of selectively excited photoluminescence. Finally we discuss why the discrete state of nanoparticles are able to be resolved in the photoluminescence excitation spectrum, but could not be differentiated in the absorption spectrum.
Resumo:
We investigate the interband optical absorption spectra near the band edge of a cylindrical semiconductor quantum wire in the presence of a static electric field and a terahertz electric field polarized along the axis. Optical absorption spectra are nonperturbatively calculated by solving the low-density semiconductor Bloch equations in real space and real time. The influence of the Franz-Keldysh (FK) effect and dynamical FK effect on the absorption spectrum is investigated. To highlight the physics behind the FK effect and dynamical FK effect, the spatiotemporal dynamics of the polarization wave packet are also presented. Under a reasonable static electric field, substantial and tunable absorption oscillations appear above the band gap. A terahertz field, however, will cause the Autler-Townes splitting of the main exciton peak and the emergence of multiphoton replicas. The presented results suggest that semiconductor quantum wires have potential applications in electro-optical devices.
Resumo:
Unintentionally doped GaN epilayers are grown by the metalorganic chemical vapor deposition (MOCVD). Photovoltaic (PV) spectroscopy shows that there appears an abnormal photoabsorption in some undoped GaN films with high resistance. The peak energy of the absorption spectrum is smaller than the intrinsic energy band gap of GaN. This phenomenon may be related to exciton absorption. Then metal-semiconductor-metal (MSM) Schottky photodetectors are fabricated on these high resistance epilayers. The photo spectrum responses are different when the light individually irradiates each of the two electrodes with the photodetector which are differently biased. When the excitation light irradiates around the reverse biased Schottky junction, the responsivity is almost one order of magnitude larger than that around the forward biased junction. Furthermore, when the excitation light irradiates the reverse biased Schottky junction, the peak energy of the spectrum has a prominent red-shift compared with the peak energy of the spectrum measured with the excitation light irradiating the forward biased Schottky junction. The shift value is about 28 meV, and it is found to be insensitive to temperature. According to the analyses of the distribution of the electric field within the MSM device and the different dependences of the response on the electric field intensity between the free carriers and excitons, a reliable explanation for the different response among various areas is proposed.
Resumo:
The influence of pulsed bias light excitation on the absorption in the defect region of undoped a-Si:H film has been investigated. Ac constant photocurrent method has been used to measure the absorption spectrum. The absorption in the defect region increases with the light pulse duration.The analysis of obtained results does not support the existence of a long time relaxation process of dangling-bond states in a-Si:H.
Resumo:
The excitation spectrum of CdS dusters in zeolite-Y is consistent with their absorption spectrum, both showing two absorption bands that are assigned to the Is-is and Is-lp transitions, respectively. A new emission at 400 nn is considered to be the recombination of the bounded excitons. The emission firstly increases then decreases with increasing cluster size or loading. The emission by excitation into the Is-is band is stronger and sharper than that by excitation into the Is-lp band. This phenomenon is attributed to the size inhomogeneity and the strong electron-phonon interaction of the dusters. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
CdS clusters in zeolite-Y have been prepared by the exchange of Cd2+ into the zeolite following by sulfurization with Na2S in solution. Blue-shifts from the bulk caused by quantum size effect and the change of absorption upon CdS loading are observed. Two absorption bands are detected for one of the sample and are assigned to the 1s-1s band and exciton transition, respectively. The exciton feature is more pronounced in the excitation spectrum than in the absorption spectrum, and the luminescence excited at the exciton band is stronger than that at the 1s-1s band. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
CdS/ZnS core/shell nanocrystals were prepared from an aqueous/alcohol medium. A red shift of the absorption spectrum and an increase of the room temperature photoluminescence intensity accompanied shell growth.
Resumo:
With the frame of the time-dependent local density approximation, an efficient description of the optical response of clusters has been used to study the photo-absorption cross section of Na-2 and Na-4 clusters. It is shown that our calculated results are in good agreement with the experiment. In addition, our calculated spectrum for the Na-4 cluster is in better agreement with experiment than the GW absorption spectrum.
Resumo:
Ion - molecule complexes of magnesium cation with ethyl isocyanate were produced in a laser- ablation supersonic expansion nozzle source. Photo- induced reactions in the 1: 1 complexes have been studied in the spectral range of 230 - 410 nm. Photodissociation mass spectrometry revealed the persistent product Mg+ from nonreactive quenching throughout the entire wavelength range. As for the reactive channels, the photoproducts, Mg+OCN and C2H5+, were produced only in the blue absorption band of the complex with low yields. The action spectrum of Mg+(OCNC2H5) consists of two pronounced peaks on the red and blue sides of the Mg+ 3(2)P <-- 3(2)S atomic transition. The ground state geometry of Mg+ - OCNC2H5 was fully optimized at B3LYP/6- 31 - G** level by using GAUSSIAN 98 package. The calculated absorption spectrum of the complex using the optimized structure of its ground state agrees well with the observed action spectrum. Photofragment branching fractions of the products are almost independent of the photolysis photon energy for the 3P(x,y,z) excitations. The very low branching ratio of reactive products to nonreactive fragment suggests that evaporation is the main relaxation pathway in the photo- induced reactions of Mg+ (OCNC2H5). (C) 2003 American Institute of Physics.
Resumo:
The effects of the transition dipole moment function (TDMF) on the dynamics Of O-3 photodissociation in the Hartley band have been exploited by means of exact 3D time-dependent wavepacket method using the SW potential energy surface [J. Chem. Phys. 78 (1983) 7191]. The calculations show that the explicit inclusion of the TDMF results in slight uniform reductions for the intensities of recurrence peaks of the autocorrelation function and a slight broadening of the absorption spectrum, in comparison with the result where the TDMF is assumed to be constant. The pattern of recurrence structures of the autocorrelation function is essentially unaffected. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
为了掌握欧报春各花色遗传规律服务于良种生产,通过对欧报春各色花进行色素吸收光谱和薄层层析分析,进行不同花色杂交研究,分析了欧报春各色花所含色素类型及各花色遗传规律。结果显示欧报春群体含多种花色素,单株也可含有多种花色素,形成多变的粉色、红色及蓝色花。黄色深浅主要由类胡萝卜素含量决定。白色对粉色及黄色为隐性遗传,黄色、粉色为显性遗传并有数量遗传特征,黄色与粉色独立遗传。蓝色为多基因控制的隐性遗传,并具有数量遗传特征。
Resumo:
In this work, we report a simple approach for controllable synthesis of one-dimensional (ID) gold nanoparticle (AuNP) assemblies in solution. In the presence of divalent metallic ions, poly(acrylic acid)-1-dodecanethiol-stabilized AuNPs (PAA-DDT@AuNPs) are found to form I D assemblies in aqueous solution by an ion-templated chelation process; this causes an easily measurable change in the absorption spectrum of the particles. The assemblies are very stable and remain suspended in solution for more than one month without significant aggregation.
Resumo:
Highly uniform and well-dispersed CeO2 and CeO2:Eu3+ (Sm3+, Tb3+) nanocrystals were prepared by a nonhydrolytic solution route and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), UV/vis absorption, and photoluminescence (PL) spectra, respectively. The result of XRD indicates that the CeO2 nanocrystals are well crystallized with a cubic structure. The TEM images illustrate that the average size of CeO2 nanocrystals is about 3.5 nm in diameter. The absorption spectrum of CeO2:Eu3+ nanocrystals exhibits red-shifting with respect to that of the undoped CeO2 nanocrystals. Under the excitation of 440 nm (or 426 nm) light, the colloidal solution of the undoped CeO2 nanocrystals shows a very weak emission band with a maximum at 501 nm, which is remarkably enhanced by doping additional lanthanide ions (Eu3+, Tb3+, Sm3+) in the CeO2 nanocrystals. The emission band is not due to the characteristic emission of the lanthanide ions but might arise from the oxygen vacancy which is introduced in the fluorite lattice of the CeO2 nanocrystals to compensate the effective negative charge associated with the trivalent ions.