152 resultados para 480
Resumo:
X-ray diffraction and Rutherford backscattering/channeling were used to characterize the crystalline quality of an InN layer grown on Al2O3(0001) Using metal-organic chemical-vapor deposition. A full width at half maximum of 0.27 degrees from an InN(0002) omega scan and a minimum yield of 23% from channeling measurements show that this 480-nm-thick InN layer grown at low temperature (450 degrees C) has a relatively good crystalline quality. High-resolution x-ray diffraction indicates that the InN layer contains a small fraction of cubic InN, besides the predominant hexagonal phase. From this InN sample, the lattice constants a=0.353 76 nm and c=0.570 64 nm for the hexagonal InN and a=0.4986 nm for the cubic InN were determined independently. 2 theta/omega-chi mapping and a pole figure measurement revealed that the crystallographic relationship among the cubic InN, the hexagonal InN, and the substrate is: InN[111]parallel to InN[0001]parallel to Al2O3[0001] and InN{110}parallel to InN{1120}parallel to Al2O3{1010}, and that the cubic InN is twinned. Photoluminescence measurements indicate that the band-gap energy of this sample is approximately 0.82 eV. (c) 2006 American Vacuum Society.
Resumo:
The optimum growth condition of GaInNAs/GaAs quantum wells (QWs) by plasma-assisted molecular beam epitaxy was investigated. High-resolution X-ray diffraction and photoluminescence (PL) measurements showed that ion damage drastically degraded the quality of GaNAs and GaInNAs QWs and that ion removal magnets can effectively remove the excess ion damage. Remarkable improvement of PL intensity and obvious appearance of pendellosung fringes were observed by removing the N ions produced in the plasma cell. When the growth rate increased from 0.73 to 1.2 ML/s, the optimum growth temperature was raised from 460 degreesC to 480 degreesC and PL peak intensity increased two times. Although the N composition decreased with increasing growth rate, degradation of optical properties of GaInNAs QWs was observed when the growth rate was over 0.92 ML/s. Due to low-temperature growth of GaInNAs QWs, a distinctive reflection high-energy electron diffraction pattern was observed only when the GaAs barrier was grown under lower As-4 pressure. The samples with GaAs barriers grown under lower As-4 pressure (V/III ratio about 24) exhibited seven times increase in PL peak intensity compared with those grown under higher As-4 pressure (V/III ratio about 50). (C) 2001 Elsevier Science B,V. All rights reserved.
Resumo:
30-period InGaAs/GaAs quantum dot superlattice was fabricated by MBE. Using cross sectional transmission electron microscopy, the InGaAs quantum dots were found to be perfectly vertically aligned in the growth direction (100). Under normally incident radiation, a distinct absorption in the 8.5 similar to 10.4 mu m range peaked at 9.9 mu m was observed. The normally incident infrared absorption in vertically aligned quantum dot superlattice in the 8 similar to 12 mu m range was realized for the first time. This result indicates the potential application of the quantum dot superlattice structure without grating as normally incident infrared detector focal plane arrays.
Resumo:
InAs layers were grown on GaAs by molecular beam epitaxy (MBE) at substrate temperature 450 and 480 degrees C, and the surface morphology was studied with scanning electron microscopy (SEM). We have observed a high density of hexagonal deep pits for samples grown at 450 degrees C, however, the samples grown at 480 degrees C have smooth surface. The difference of morphology can be explained by different migration of cations which is temperature dependent. Cross-sectional transmission electron microscopy (XTEM) studies showed that the growth temperature also affect the distributions of threading dislocations in InAs layers because the motion of dislocations is kinetically limited at lower temperature. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Silicon nanowires (SiNWs) were grown directly from n-(111) single-crystal silicon (c-Si) substrate based on a solid-liquid-solid mechanism, and Au film was used as a metallic catalyst. The room temperature photoluminescence properties of SiNWs were observed by an Xe lamp with an exciting wavelength of 350 nm. The results show that the SiNWs exhibit a strongly blue luminescent band in the wavelength range 400-480 nm at an emission peak position of 420 nm. The luminescent mechanism of SiNWs indicates that the blue luminescence is attributed to the oxygen-related defects, which are in SiOx amorphous oxide shells around the crystalline core of SiNWs.
Resumo:
Since 1990s, the software industry in China has been developed very rapidly and the total revenue in recent three years of 2005, 2006 and 2007 were 390.0, 480.0, and 583.4 billions RMB respectively, increased by 28.3% annually on an average basis [1]. By the end of 2007, there were about 18,000 software enterprises in China, and the population of software professionals was 1.48 millions roughly. In the global software market, China, with annual revenue about 82.2 billions USD (8.74% of the total: 940 billions USD), currently ranks on the fourth after USA, EU and Japan. However, the software industry in China is still comparatively weak. Most software enterprises have only tens of employees and millions RBM of revenue. And the software development productivity in China varies highly across the software industry in terms of organization, development type, business area, region, language, project size and team size [2]. Co-operative efforts from the government, the industry and the academy are needed [3]. Continuous software process improvement is an effective way to change the challenging situation of the software industry in China.
Resumo:
国家自然科学基金
Resumo:
Thermal tuning of the localized surface plasmon resonance (LSPR) of Ag nanoparticles on a thermochromic thin film of VO2 was studied experimentally. The tuning is strongly temperature dependent and thermally reversible. The LSPR wavelength lambda(SPR) shifts to the blue with increasing temperature from 30 to 80 degrees C, and shifts back to the red as temperature decreases. A smart tuning is achievable on condition that the temperature is controlled in a stepwise manner. The tunable wavelength range depends on the particle size or the mass thickness of the metal nanoparticle film. Further, the tunability was found to be enhanced significantly when a layer of TiO2 was introduced to overcoat the Ag nanoparticles, yielding a marked sensitivity factor Delta lambda(SPR)/Delta n, of as large as 480 nm per refractive index unit (n) at the semiconductor phase of VO2.
Resumo:
Granules of waste tires were pyrolyzed tinder vacuum (3.5-10 kPa) conditions, and the effects of temperature and basic additives (Na2CO3, NaOH) on the properties of pyrolysis were thoroughly investigated. It was obvious that with or without basic additives, pyrolysis oil yield increased gradually to a maximum and subsequently decreased with a temperature increase from 450 degrees C to 600 degrees C, irrespective of the addition of basic additives to the reactor. The addition of NaOH facilitated pyrolysis dramatically, as a maximal pyrolysis oil yield of about 48 wt% was achieved at 550 degrees C without the addition of basic additives, while a maximal pyrolysis oil yield of about 50 wt% was achieved at 480 degrees C by adding 3 wt% (w/w, powder/waste tire granules) of NaOH powder. The composition analysis of pyrolytic naphtha (i.b.p. (initial boiling point) similar to 205 degrees C) distilled from pyrolysis oil showed that more dl-limonene was obtained with basic additives and the maximal content of dl-limonene in pyrolysis oil was 12.39 wt% which is a valuable and widely-used fine chemical. However, no improvement in pyrolysis was observed with Na2CO3 addition. Pyrolysis gas was mainly composed of H-2, CO, CH4, CO2, C2H4 and C2H6. Pyrolytic char had a surface area comparable to commercial carbon black, but its proportion of ash (above 11.5 wt%) was much higher.
Resumo:
As part of Pilot Project of KIP of CAS, a feasibility study of hydrogen production system using biomass residues is conducted. This study is based on a process of oxygen-rich air gasification of biomass in a downdraft gasifier plus CO-shift. The capacity of this system is 6.4 t biomass/d. Applying this system, it is expected that an annual production of 480 billion N m(3) H-2 will be generated for domestic supply in China. The capital cost of the plant used in this study is 1328$/(N m(3)/h) H-2 out, and product supply cost is 0.15$/N m(3) H-2. The cost sensitivity analysis on this system tells that electricity and catalyst cost are the two most important factors to influence hydrogen production cost.
Resumo:
In this paper, we investigate the mechanism of tunable parametric superfluorescence (PS) based on the second harmonic generation and parametric processes taking place in the same nonlinear crystal (BBO). The tunable spectra of PS has been generated between 480 nm and 530 nm, which is pumped by the second-harmonic from the high-power Ti: sapphire laser system at 1 kHz repetition rate. We present the generation mechanism of PS theoretically and simulate the process of PS ring using the amplification transfer function. The experiment and the theory show that PS will appear when the phase matching angle for second-harmonic generation is close to the optimal pump angle for optical parametric generation, and then the tunable spectra of PS are generated by slightly adjusting the crystal angle. The result provides a theoretical basis for controlling the generation of PS and quantum entanglement states, which is of great significance for the development of quantum imaging, quantum communications and other applieations.