604 resultados para Quantum well lasers
Resumo:
Equilateral triangle semiconductor microcavities with tensile-strained InGaAsP multi-quantum-well asthe active region are fabricated by the inductively coupled plasma (ICP) etching technique. The modecharacteristics of the fabricated microcavities are investigated by photoluminescence, and enhanced peaksof the photoluminescence spectra corresponding to the fundamental transverse modes are observed formicrocavities with side lengths of 5 and 10 μm. The mode wavelength spacings measured experimentallycoincide very well with those obtained by the theoretical formulae.
Resumo:
The in-plane optical anisotropy of several GaAs/AlGaAs quantum well samples with different well widths has been measured at room temperature by reflectance-difference spectroscopy (RDS). The RDS line shapes are found to be similar in all the samples examined here, which dominantly consist of two peak-like signals corresponding to 1HH-->1E and 1LH-->1E transition. As the well width is decreased, or the 1 ML InAs layer is inserted at one interface, the intensity of the anisotropy increases quickly. Our detail analysis shows that the anisotropy mainly arises from the anisotropic interface roughness. The results demonstrate that the RDS technique is sensitive to the interface structures.
Resumo:
High speed reliable 1.55 mum AlGaInAs multi-quantum well ridge waveguide (RW) DFB laser is developed with a 9GHz -3dB bandwidth. A high speed self aligned constricted mesa 1.55 mum DFB laser is achieved with a 9.1GHz -3dB bandwidth and a more than 20mW output power. A cost effective single RW electroabsorption modulated DFB laser (EMLs) is proposed and successfully fabricated by adopting selective area growth techniques:. a penalty free transmission at 2.5Gbps over 280Km normal G.652 single mode fiber is realized by using this EML as light source. For achieving a better performance EMLs. a gain-coupled DFB laser with etched quantum wells is successfully integrated with a electroabsorption modulator (EAM) for a high single mode yield. the wavelength of a EML is tuned in a 3.2nm range by a integrated thin-film heater for the wavelength routing. a buried heterostructure DFB laser is also successfully integrated with a RW EAM for a lower threshold current. lower EAM parasitic capacitance and higher output power.
Resumo:
The deposition rate and refractive index for a-Si(amorphous silicon) and SiO2 grown by PECVD were studied under different pressure, power and proportion of reactant source gases. a-Si/SiO2 MQW(multi-quantum well) with high quality was deposited under suitable conditions, in which the thickness of the a-Si layers is several nanometers. The sample of a-Si/SiO2 MQW was crystallized by laser annealing. Because of the confinement of the SiO2 layers, crystalline grains were formed during the a-Si layers were being crystallized. The size of the crystalline grains were not more than the thickness of the a-Si layers. The a-Si layers were crystallized to be nanometer crystalline silicon(nc-Si), therefore, nc-Si/SiO2 MQW was formed. For the a-Si/SiO2 MQW with 4.0nm a-Si wells separated by 5nm SiO2 barries, most of the a-Si were crystallized to silicon grains after laser annealing,and the size of the grains is 3.8nm. Strong photoluminescence with three peaks from the nc-Si/SiO2 MQW was detected at 10K. The wavelength of the peaks were 810nm, 825nm and 845nm, respectively.
Resumo:
Using the multiband quantum transmitting boundary method (MQTBM), hole resonant tunneling through AlGaAs/GaMnAs junctions is investigated theoretically. Because of band-edge splitting in the DMS layer, the current for holes with different spins are tuned in resonance at different biases. The bound levels of the "light" hole in the quantum well region turned out to be dominant in the tunneling channel for both "heavy" and "light" holes. The resonant tunneling structure can be used as a spin filter for holes for adjusting the Fermi energy and the thickness of the junctions.
Resumo:
The present status and future prospects of functional information materials, mainly focusing on semiconductor microstructural materials, are introduced first in this paper. Then a brief discussion how to enhance the academic level and innovation capability of research and development of functional information materials in China are made. Finally the main problems concerning the studies of materials science and technology are analyzed, and possible measures for promoting its development are proposed.
Resumo:
Resonant-cavity-enhanced (RCE) photodetectors have been demonstrated to be able to improve the bandwidth-efficiency product. We report one top-illumination and one bottom-illumination SiGe/Si multiple quantum-well (MQW) RCE photodetectors fabricated on a separation-by-implanted-oxygen (SIMOX) wafer operating near 1300nm, The buried oxide layer in SIMOX is used as a mirror to form a vertical cavity with the silicon dioxide/silicon Bragg reflector deposited on the top surface. A peak responsivity with a reverse bias of 5V is measured 10.2mA/W at 1285nm, and a full-width at half maximum of 25nm for the top-illumination RCE photodetector, and 19mA/W at 1305nm, and a full-width at half maximum of 14nm for the bottom-illumination one. The external quantum efficiency of the bottom-illumination RCE photodetector is up to 2.9% at 1305nm with a reverse bias of 25V. The responsivity of the bottom-illumination RCE photodetector is improved by two-fold compared with that of the top-illumination one.
Resumo:
The single delta -doped InGaAs/AlGaAs pseudomorphic HEMT structure materials were grown by molecular beam epitaxy. The photoluminescence spectra of the materials were studied. There are two peaks in the photoluminescence spectra of the materials, corresponding to two sub energy levels of InGaAs quantum well. The ratio of the two peak's intensity was used as criterion to optimize the layer structures of the materials. The material with optimized layer ;tructures exhibits the 77 It mobility and two-dimensional electron gas density of 16 500 cm(2)/Vs and 2.58 x 10(12) cm(-2) respectively, and the 300 K mobility and two-dimensional electron gas density of 6800 cm(2)/Vs and 2.55 x 10(12) cm(-2) respectively. The pseudomorphic HEMT devices with gate length of 0.2 mum were fabricated using this material. The maximum transconductance of 650 mS/mm and the cut-off frequency of 81 GHz were achieved. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We have studied the growth of GaInNAs/GaAs quantum well (QW) by molecular beam epitaxy using a DC plasma as the N sourer. The N concentration was independent of the As pressure and the In concentration, but inversely proportional to the growth rate. It was almost independent of T, over the range of 400-500 degreesC, but dropped rapidly when T-g exceeded 500 degreesC. Thermally-activated N surface segregation is considered to account for the strong falloff of the N concentration. As increasing N concentration, the steep absorption edge of the photovoltage spectra of GaInNAs/GaAs QW became gentle, the full-width at half-maximum of the photoluminescence (PL) peal; increased rapidly, and a so-called S-shaped temperature dependence of PL peak energy showed up. All these were attributed to the increasing localized state as N concentration. Ion-induced damage was one of the origins of the localized state. A rapid thermal annealing procedure could effectively remote the localized state. (C) 2001 Elsevier Science D.V. All rights reserved.
Resumo:
A series of systematic experiments on the growth of high quality GaNAs strained layers on GaAs (001) substrate have been carried out by using DC active Nz plasma, assisted molecular beam epitaxy. The samples of GaNAs between 3 and 200 nm thick were evaluated by double crystal X-ray diffraction (XRD) and photoluminescence (PL) measurements. PL and XRD measurements for these samples are in good agreement. Some material growth and structure parameters affecting the properties of GaNAs/GaAs heterostructure were studied; they were: (1) growth temperature of GaNAs epilayer; (2) electrical current of active N-2 plasma; (3) Nz flow rate; (4) GaNAs growth rate; (5) the thickness of GaNAs strained layer. XRD and PL measurements showed that superlattice with distinct satellite peaks up to two orders and quantum well structure with intensity at 22 meV Fourier transform infrared spectroscopy (FWHM) can be achieved in molecular beam epitaxy (MBE) system. (C) 2000 Published by Elsevier Science S.A. All rights reserved.
Resumo:
Hybrid integration of GaAs/AlGaAs multiple quantum well self electro-optic effect device (SEED) arrays are demonstrated flip-chip bonded directly onto 1 mu m silicon CMOS circuits. The GaAs/AlGaAs MQW devices are designed for 850 nm operation. Some devices are used as input light detectors and others serve as output light modulators. The measurement results under applied biases show good optoelectronic characteristics of elements in SEED arrays. Nearly the same reflection spectrum is obtained for the different devices at an array and the contrast ratio is more than 1.2:1 after flip-chip bonding and packaging. The transimpedance receiver-transmitter circuit can be operated at a frequency of 300 MHz.
Resumo:
In this review, the potential of mode-locked lasers based on advanced quantum-dot ( QD) active media to generate short optical pulses is analysed. A comprehensive review of experimental and theoretical work on related aspects is provided, including monolithic-cavity mode-locked QD lasers and external-cavity mode-locked QD lasers, as well as mode-locked solid-state and fibre lasers based on QD semiconductor saturable absorber mirrors. Performance comparisons are made for state-of-the-art experiments. Various methods for improving important characteristics of mode-locked pulses such as pulse duration, repetition rate, pulse power, and timing jitter through optimization of device design parameters or mode-locking methods are addressed. In addition, gain switching and self-pulsation of QD lasers are also briefly reviewed, concluding with the summary and prospects.
Resumo:
The influence of well thickness on the electroluminescence (EL) of InGaN/GaN multiple quantum wells (MQWs) grown by metalorganic chemical vapor deposition is investigated. It is found that the peak wavelength of EL increases with the increase of well thickness when the latter is located in the range of 3.0-5.1 nm. The redshift is mainly attributed to the quantum confined Stark effect (QCSE). As a contrast, it is found that the EL intensity of InGaN/GaN MQWs increases with the increase of well thickness in spite of QCSE. The result of X-ray diffraction demonstrates that the interface become smoother with the increase of well thickness and suggests that the reduced interface roughness can be an important factor leading to the increase of EL intensity of InGaN/GaN MQWs. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The choice of the etching depth for semiconductor microcavities is a compromise between a high Q factor and a difficult technique in a practical fabricating process. In this paper, the influences of the etching depth on mode Q factors for mid-infrared quantum cascade microcylinder and microsquare lasers around 4.8 and 7.8 mu m are simulated by three-dimensional (3D) finite-difference time-domain (FDTD) techniques. For the microcylinder and the microsquare resonators, the mode Q factors of the whispering-gallery modes (WGMs) increase exponentially and linearly with the increase in the etching depth, respectively Furthermore, the mode Q factors of some higher order transverse WGMs may be larger than that of the fundamental transverse WGM in 3D microsquares. Based on the field distribution of the vertical multilayer slab waveguide and the mode Q factors versus the etching depth, the necessary etching depth is chosen at the position where the field amplitude is 1% of the peak value of the slab waveguide. In addition, the influences of sidewall roughness on the mode Q factors are simulated for microsquare resonators by 2D FDTD simulation. (C) 2009 Optical Society of America