488 resultados para LiteSteel Beam
Enhanced biological effect induced by a radioactive C-9-ion beam at the depths around its Bragg peak
Resumo:
To explore the potential of double irradiation source, radioactive C-9-ion beam, in tumor therapy, a comparative study oil the surviving effect of human salivary gland cells at different penetration depths between C-9 and C-12-ion beams has been carried out. The 9C-ion C beam, especially at the distal side of the beam came out more efficient in cell killing at the depths around its Bragg peak than the 12 Bragg peak. Compared to the C-12 beam, an increase in RBE by a factor of up to 2.13 has been observed at the depths distal to the Bragg peak of the 9C beam. The 9C beam showed an enhanced biological effect at the penetration depths around its Bragg peak, corresponding to the stopping region of the incident C-9-ions and where the delayed low-energy particles were emitted. Further analysis revealed that cell lethality by the emitted particles from the stopping C-9-ions is responsible for the excessive biological effect at the penetration depths around the Bragg peak of the C-9 beam.
Resumo:
Electron beam longitudinal temperature is an important parameter on electron cooling devise. In this paper, electron beam longitudinal temperature on the HIRFL-CSR electron cooling devise is deduced from four important factors-flattened distribution, electrostatic accelerate, space charge effect and beam scattering.
Resumo:
A new axial beam injection system is designed and being constructed at the HIRFL. It consists of 2 GLASSER lenses, 1 dipole, 5 quadrupoles and 3 solenoids. There are two beam line branches for 14.5GHz ECR ion source and 18.5GHz super conducting ECR ion source. Both transverse and longitudinal beam optics are improved in contrast with the old one. The layout, beam optics calculation results and further improved design are given.
Resumo:
In order to match the beam from the injection machine SFC of the HIRFL to the main ring of HIRFL-CSR, both beam emittance confining method and beam energy spread reducing method are proposed. The beam preparation principles and calculation results are presented
Resumo:
The effects of 960 MeV carbon ion beam and 8 MeV X-ray irradiation on adventitious shoots from in vitro leaf explants of two different Saintpaulia ionahta (Mauve and Indikon) cultivars were studied with regard to tissue increase, shoots differentiation and morphology changes in the shoots. The experimental results showed that the survival fraction of shoot formation for the Mauve and Indikon irradiated with the carbon ion beam at 20 Gy were 0.715 and 0.600, respectively, while those for both the cultivars exposed to the Xray irradiation at the same dose were 1.000. Relative biological effectiveness (RBE) of Mauve with respect to X-ray was about two. Secondly, the percentage of regenerating explants with malformed shoots in all Mauve regenerating explants irradiated with carbon ion beam at 20 Gy accounted for 49.6%, while that irradiated with the same dose of X-ray irradiation was only 4.7%; as for Saintpatdia ionahta Indikon irradiated with 20 Gy carbon ion beam, the percentage was 43.3%, which was higher than that of X-ray irradiation. Last, many chlorophyll deficient and other varieties of mutants were obtained in this study. Based on the results above, it can be concluded that the effect of mutation induction by carbon ion beam irradiation on the leaf explants of Saintpaulia ionahta is better than that by X-ray irradiation; and the optimal mutagenic dose varies from 20 Gy to 25 Gy for carbon ion beam irradiation.
Resumo:
There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e mu A of O7+, 505 e mu A of Xe20+ 306 e mu A of Xe27+, and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.
Resumo:
枯草芽孢杆菌BJ1是一种在真菌病害防治中发挥重要作用的生防因子,为进一步提高它的抑菌能力,获得生防效果更好的高效菌种,利用不同能量和剂量的12C6+对生防菌BJ1进行了离子辐照处理。研究结果表明:离子辐照生防菌BJ1的最适宜剂量为200~400 Gy,传能线密度(LET)为60 keV/μm;突变菌株的抑菌能力比BJ1提高了2%~21%;不仅防病效果比BJ1提高了17.48%,而且对植物具有更好的促生长作用。
Resumo:
目前加速速度范围在0.01c—0.3c的粒子的超导腔主要使用四分之一波长腔型。用于不同加速器上的频率范围在50—240MHz的四分之一波长腔在建造或者预研中。这种腔型的一个不足是其横向电磁成分会造成束流偏转效应,从而导致发射度的增长和束流的溢漏,在强流重离子加速器中这种效应尤为严重。对中国科学院近代物理研究所超导直线加速器中的频率为80.5和161MHz的四分之一波长腔的偏转效应进行了分析,计算结果表明,在四分之一腔体的设计时需要考虑到束流偏转的修正,这通常需要在漂移管端面上削适当大小的倾角来实现。
Resumo:
选用12C6+离子辐照诱变阿维菌素B1a产生菌ZJAV-A1,研究其诱变效应。实验结果表明,12C6+离子辐照剂量50Gy时致死率97%,正突变率最高可达到34.2%。通过12C6+离子诱变处理,结合平板培养基及斜面培养基的正突变菌株筛选,最终获得一株稳定性良好,阿维菌素B1a组分产量稳定在4460—4588μg/ml之间,较出发菌株提高11.1%—14.7%的突变株ZJAV-Y1-203。
Resumo:
Based on the isospin-and momentum-dependent hadronic transport model IBUU04, we have investigated the pi(-)/pi(+) ratio in the following three reactions: Ca-48+Ca-48, Sn-124 +Sn-124 and Au-197+Au-197 with nearly the same isospin asymmetry but different masses, at the bombarding energies from 0.25 to 0.6 A GeV. It is shown that the sensitivity of probing the E-sym (rho) with pi(-)/pi(+) increases with increasing the system size or decreasing the beam energy, showing a correlation to the degree of isospin fractionation. Therefore, with a given isospin asymmetry, heavier system at energies near the pion threshold is preferential to study the behavior Of nuclear symmetry energy at supra-saturation densities.
Resumo:
Yeast strain Saccharornyces cerevisiae was irradiated with different doses of 85 MeV/u Ne-20(10+) to investigate DNA damage induced by heavy ion beam in eukaryotic microorganism. The survival rate, DNA double strand breaks (DSBs) and DNA polymorphic were tested after irradiation. The results showed that there were substantial differences in DNA between the control and irradiated samples. At the dose of 40 Cy, the yeast cell survival rate approached 50%, DNA double-strand breaks were barely detectable, and significant DNA polymorphism was observed. The alcohol dehydrogenase II gene was amplified and sequenced. It was observed that base changes in the mutant were mainly transversions of T-->G and T-->C. It can be concluded that heavy ion beam irradiation can lead to change in single gene and may be an effective way to induce mutation.
Resumo:
微束辐照装置是将辐照样品的束斑缩小到μm量级,能够对辐照粒子进行准确定位和精确计数的实验平台,是开展辐照材料学、辐照生物学、辐照生物医学和微加工的有力工具。μm量级的束流对设备的准直安装也提出了极高的要求,对于HIRFL系统微束线上的二极磁铁,由于其所在位置的空间相当狭小,使得设计就位时磁铁的位置及角度与地面做基准时的不同,这给安装准直工作带来了挑战。通过引入变化的基准坐标值的办法,有效解决了这一难题,使全部磁铁安装误差都控制在了要求的公差范围之内。
Resumo:
高效率的电子冷却过程,要求电子束与离子束位置平行且重叠。为了同时测量电子束与离子束的位置,在HIRFL-CSR电子冷却装置上研发了以容性圆筒形极板为感应电极的束流位置探测系统。系统测量束流通过探针时产生的脉冲感应信号,并进行傅里叶变换得到频谱信号,分析4个不同电极上频谱信号强度获取束流的位置信息。测量结果表明,该束流位置探测系统测量准确,为定量研究储存环离子累积和电子冷却过程与两种束流相对位置及角度的依赖关系提供了条件。
Resumo:
采用束团在纵向相空间快速旋转的非绝热压缩方法研究了在兰州重离子加速器冷却储存环(HIRFL-CSR)上获取高能ns量级短脉冲重离子束的可行性,利用K-V包络方程对能量为250MeV/u、初始纵向束团长度为200ns、初始动量分散为5×10-4的238U72+离子束团的非绝热压缩过程进行了束流动力学模拟,给出了在束团压缩过程中束流相关参数的变化。结果表明,在CSR上可取得最短为16ns长度的238U72+离子束团,可满足用于高能量密度物理研究的50ns束团长度的要求。
Resumo:
利用100MeV/u的12C6+离子束辐照酵母Saccharomyces cerevsiea YY,选育出一株高产突变菌株C03A,考察C03A发酵过程中不同温度、pH、糖汁浓度对发酵的影响。通过正交实验确定最佳发酵条件为:糖汁浓度24%、温度35℃、pH5.0。在10L发酵罐实验中,C03A发酵速率相对原始菌株高,36h发酵完全,比原始菌株缩短12h;发酵产酒率达到13.2%(V/V),比原始菌株高1.6%(V/V)。