86 resultados para total porosity
Resumo:
In order to improve the total-dose radiation hardness of the buried oxides(BOX) in the structure of separa tion-by-implanted-oxygen(SIMOX) silicon-on-insulator(SOI), nitrogen ions are implanted into the buried oxides with two different doses,2 × 1015 and 3 × 1015 cm-2 , respectively. The experimental results show that the radiation hardness of the buried oxides is very sensitive to the doses of nitrogen implantation for a lower dose of irradiation with a Co-60 source. Despite the small difference between the doses of nitrogen implantation, the nitrogen-implanted 2 × 1015 cm-2 BOX has a much higher hardness than the control sample (i. e. the buried oxide without receiving nitrogen implantation) for a total-dose irradiation of 5 × 104rad(Si), whereas the nitrogen-implanted 3 × 1015 cm-2 BOX has a lower hardness than the control sample. However,this sensitivity of radiation hardness to the doses of nitrogen implantation reduces with the increasing total-dose of irradiation (from 5 × 104 to 5 × 105 rad (Si)). The radiation hardness of BOX is characterized by MOS high-frequency (HF) capacitance-voltage (C-V) technique after the top silicon layers are removed. In addition, the abnormal HF C-V curve of the metal-silicon-BOX-silicon(MSOS) structure is observed and explained.
Spatial Estimation of Soil Total Nitrogen Using Cokriging with Predicted Soil Organic Matter Content
Resumo:
A scheme based on a W-shaped axicon mirror device for total-internal-reflection fluorescence microscopy (TIRFM) is presented. This approach combines the advantages of higher efficiency compared with traditional TIRFM, adjustable illumination area, and simple switching between wide-field and TIRF imaging modes. TIRF images obtained with this approach are free of shadow artifacts and of interference fringes. Example micrographs of fluorescently labeled polystyrene beads, of Convallaria majalis tissue, and of Propidium-iodide-labeled Chinese hamster ovary cells are shown, and the capabilities of the scheme are discussed. (C) 2010 Optical Society of America