54 resultados para time preparation
Resumo:
It is reported for the first time that the Pt/C catalyst can be prepared with a new and simple organic sol method using SnCl2 as the reductant. It was found that the average size of the Pt particles in the Pt/C catalysts could be controlled with controlling the preparation conditions. The effect of the average sizes of the Pt particles in the Pt/C catalysts obtained with this method on the electrocatalytical activity of the oxidation of methanol was investigated.
Resumo:
Flat-sheet microporous membranes from F2.4 for membrane distillation (MD) were prepared by phase inversion process. Dimethylacetamide (DMAC) and LiClO(4)(.)3H(2)O/trimethyl phosphate (TMP) were, respectively, used as solvent and pore-forming additives. The effects of casting solution composition, exposure time prior to coagulation and temperature of precipitation bath on F2.4 membrane structure were investigated. The morphology of resultant porous membrane was observed by scanning electron microcopy. Some natures of F2.4 porous membrane after drying in air, such as mechanical properties and hydrophobicity, were exhibited and compared with poly(vinylidene fluoride) (PVDF) membrane prepared by the same ways. Stress-at-break and strength stress of F2.4 microporous membrane are higher than that of PVDF membrane, and elongation percentage of F2.4 membrane at break is about eight-fold as great as that of PVDF membrane. Contact angle of F2.4 microporous membrane to water (86.6 +/- 0.51degrees) was also larger than that of PVDF mernbrane (80.0 +/- 0.78degrees). MD experiment was carried out using a direct contact membrane distillation (DCMD) configuration as final test to permeate performance of resultant microporous membrane.
Resumo:
The organic sol method for preparing ultrafine transition metal colloid particles reported for the first time by Bonnemann et al. [H. Bonnemann, W Brijoux, R. Brinkmann, E. Dinjus, T. Jou beta en, B. Korall, Angew. Chem. Int. Ed. Engl., 30 (1991) 1312] has been improved in this paper. The improved organic sol method uses SnCl2 as the reductant and methanol as the organic solvent. Thus, this method is very simple and inexpensive. It was found that the average size of the Pt particles in the Pt/C catalysts can be controlled by adjusting the evaporating temperature of the solvent. Therefore, the Pt/C catalysts prepared by the same method are suitable for evaluating the size effect of the Pt particles on electrocatalytic performance for methanol oxidation. The results of the X-ray diffraction (XRD) and transmission electron microscopy (TEM) showed that when the evaporating temperatures of the solvent are 65, 60, 50, 40, and 30 degrees C, the average sizes of the Pt particles in the Pt/C catalysts prepared are: 2.2, 3.2, 3.8, 4.3, and 4.8 nm, respectively. The X-ray photoelectron spectroscopic (XPS) results demonstrated that the small Pt particles are easily oxidized and the decomposition/adsorption of methanol cannot proceed on the surfaces of Pt oxides.
Resumo:
We report the synthesis of hexadecyltrimethylammonium bromide (CTAB)-stabilized cubic Pt nanoparticles by NaBH4 reduction of H2PtCl6 in aqueous CTAB solution. These Pt nanoparticles (average size of 7 nm) were well dispersed in aqueous solution and stable at least for 2 months. Addition of a trace amount of AgNO3 can alter the morphology of these Pt nanoparticles. More interestingly, the as-prepared uniform Pt nanoparticles were further developed into bigger Pt nanoagglomerates (similar to 20 to 47 nm) by a seed-mediate growth process. Dentritic and spherical Pt nanoagglomerates can be synthesized by altering the incubation time and their size can be tuned by controlling the amount of the seeds added.
Resumo:
A facile molten salt synthesis route was developed to prepare ZnTiO3 ceramic powders with simple oxides ZnO and TiO2 using sodium and potassium chloride eutectic salts as flux. The role of calcination temperature and time and the amount of salt addition to ZnTiO3 formation was investigated by thermogravimetry-differential thermal analysis, X-ray diffraction and Fourier transformation-infrared spectroscopy measurements. Pure hexagonal phase of ZnTiO3 could be obtained from the mixture of the simple oxides and the chlorides (50 mol% KCl, 20 times to oxides in molar ratio) heating at 800 degrees C for 6 h. The scanning electron microscopy images revealed the products were hexagonal sheets of about 1-3 mu m size. Increasing the amount of salt aids in reducing the crystal sizes of final ceramic powders because of diluting the solution.
Resumo:
A simple method for the fabrication of Pd nanoparticles is described. The three-dimensional Pd nanoparticle films are directly formed on a gold electrode surface by simple electrodeposition at -200 mV from a solution of 1 M H2SO4+0.01 mM K2PdCl4. X-Ray photoelectron spectroscopy verifies the constant composition of the Pd nanoparticle films. Atomic force microscopy proves that the as-prepared Pd nanoparticles are uniformly distributed with an average particle diameter of 45-60 nm. It is confirmed that the morphology of the Pd nanoparticle films are correlated with the electrodeposition time and the state of the Au substrate. The resulting Pd-nanoparticle-film-modified electrode possesses high catalytic activity for the reduction of dissolved oxygen in 0.1 M KCl solution. Freshly prepared Pd nanoparticles can catalyze the reduction of O-2 by a 4-electron process at -200 mV in 0.1 M KCl, but this system is not very stable. The cathodic peaks corresponding to the reduction of O-2 gradually decrease with potential cycling and at last reach a steady state. Then two well-defined reduction peaks are observed at -390 and -600 mV vs. Ag/AgCl/KCl (sat.). Those two peaks correspond to a 2-step process for the 4-electron reduction pathway of O-2 in this neutral medium.
Resumo:
CeO2 nanocrystalline particulates with different sizes were prepared by precipitation method using ethanol as dispersive and protective reagent. XRD spectra show that the synthesized CeO2 has cubic crystalline structure of space group O-H(5)-F-M3M, when calcination temperature is in the range of 250 similar to 800 degreesC. TEM images reveal that CeO2 particles are spherical in shape. The average size of the particles increases with the increase of calcination temperature. Thermogravimetric analysis indicates that the weight loss of precursor mainly depends on the calcination temperature, and little depends on the calcination time. Measurements of CeO2 relative density show that the relative density of CeO2 nanocrystalline powders increases with increasing CeO2 particle size.
Resumo:
The abzyme (Se-6E8) with a higher thyroxine deiodinase activity was prepared by modifying the serine residues of monoclonal antibody (6E8)with phenylmethanesulfonyl fluoride and sodium hydrogen selenide, and the 6E8 against O-methyl-T-4, which is a kind of thyroxine derivatives and was taken as a hapten for the first time. Two bands were found corresponding to the 5.5 kD heavy chain and the 2.7 kD light chain respectively by SDS-PAGE. The characteristics of dissociation constants, pH, and temperature were also studied. The results show that the activity of Se-6E8 is 2 010 U/mumol protein, and the proper temperature and pH of the catalytic reactions is 57 degreesC and 8.2 respectively.
Resumo:
Poly(ethyl acrylate) (PEA)/SiO2 hybrids with different compositions were prepared under different casting temperatures and pH values. Their morphology as investigated by transmission electron microscopy (TEM) shows that samples with different compositions have different morphologies. When the SiO2 content is lower, PEA is the continuous phase and SiO2 is the dispersed phase. At higher SiO2 content, the change in phase morphology takes place, nd PEA gradually dispersing in the form of latex particles in SiO2 matrix. Change in phase morphology depends mainly on the time the sol-gel transition occurs. At suitable casting temperature and pH value, PEA/SiO2 in 95/5 and 50/50 hybrids with even dispersion was obtained.
Resumo:
The behavior of arachidic acid on the surface of YCI3 aqueous subphase was studied by LB and Brewster angle microscopy techniques. The results showed that the pre-compressing time and the pH of the subphase played an important role in the forming of the monolayer. The monolayer on the subphase surface was irreversible. If the monolayer was compressed into wrinkles, the monolayer could not become uniform again. The optimum transferring conditions were selected and the ordered yttrium arachidate multilayer with a long spacing of 4.96 nm and a tilt angle of 28.5degrees of the three alkyl chains from the surface normal was fabricated and characterized.
Resumo:
The PVC catalyst was prepared with solid phase reaction method (Pt/C(S)) for the first time. Its performances were compared with that prepared by the traditional liquid phase reaction method. The results demonstrate that the electrocatalytic activity of PVC catalyst with solid phase reaction method for methanol oxidation is higher than that with liquid phase reaction method. XRD and TEM measurements indicate that the Pt/C(S) possesses low crystalline extent and small particle size.
Resumo:
The formation process of monolayer of octa-n-butoxy-2,3-naphthalocyanine copper ( I), [CuNc(OBu)(8)], on water subphase was studied. Its multilayers were successifully deposited on the hydrophilic substrates by Z-type deposition mode using LB technique. Stable solid film with a limiting molecular area of 0.74 nm(2) and a collapse pressure of 55 mN/m were formed. The LB film structure was characterized by IR and electronic absorption spectra. Macrocycle of CuNc (OBu)(8) molecules have a face-to-face arrangement in the multilayers. These films have good sensitivities to vapor of alcohols, with the following sequence of sensitivities: i-PrOH>EtOH>MeOH. The response time and recovery time of the LB films to vapor of MeOH, EtOH and i-PrOH[volume fraction (1-5) X 10(-5)] were within 2 and 5 seconds respectively, while those of the LB films to ammonia(1 X 10(-4)) were 30-60 seconds and 4-5 minutes respectively.
Resumo:
Two kinds of rare earth (RE) complexes were intercalated into zirconium bis(monohydrogenphosphate) (alpha -ZrP) by exchanging the RE complexes into the p-methyoxyaniline (PMA) preintercalated compound Zr(O3POH)(2). 2PMA (alpha -ZrP . 2PMA). Powder X-ray diffraction patterns reveal that Eu(DBM)(3)phen (DBM: dibenzoylmethane, phen: 1,10-phenanthroline) and Tb(AA)(3)phen (AA: acetylacetone) intercalated into alpha -ZrP . 2PMA. This was confirmed by the UV-visible spectra of both the RE complexes and the assemblies. At the same time, the assemblies have better luminescent properties, and the fluorescent lifetimes of RE3+ in the excited state in the assemblies are much longer than those in the complexes. The stabilities of the assemblies under UV radiation are much better than those of the RE complexes.
Resumo:
The use of functional groups bearing silica/poly(styrene-co-4-vinylpyridine) core-shell particles as a support for a zirconocene catalyst in ethylene polymerization was studied. Several factors affecting the behavior of the supported catalyst and the properties of the resulting polymer, such as time, temperature, Al/N (molar ratio), and Al/Zr (molar ratio), were examined. The conditions of the supported catalyst preparation were more important than those of the ethylene polymerization. The state of the supported catalyst itself played a decisive role in both the catalytic behavior of the supported catalyst and the properties of polyethylene (PE). IR and X-ray photoelectron spectroscopy were used to follow the formation of the supports. The formation of cationic active species is hypothesized, and the performance of the core-shell-particle-supported zirconocene catalyst is discussed as well. The bulk density of the PE formed was higher than that of the polymer obtained from homogeneous and polymer-supported Cp2ZrCl2/methylaluminoxane catalyst systems. (C) 2001 John Wiley & Sons, Inc.
Resumo:
The binary and ternary rare-earth terbium(m) complexes were introduced into the styrene/alpha -methylacrylic acid copolymerization system, and some optical resins that possess a high transparency in visible light region were obtained. The study of the optical property showed that they have good luminescent properties such as a high luminous intensity and a long luminous lifetime, In addition, we investigated the relationship among the transparency, the luminescent property of the copolymer, and the content of the components in the polymeric system. The results indicated that the optical resins can provide a relatively stable environment for composite rare earth complexes, which is good to exhibit the luminescent properties of rare earth complexes. At the same time, the rare earth complexes can offer the transparent resin a novel function.