76 resultados para threshold random variable
Resumo:
We present a method of image-speckle contrast for the nonprecalibration measurement of the root-mean-square roughness and the lateral-correlation length of random surfaces with Gaussian correlation. We use the simplified model of the speckle fields produced by the weak scattering object in the theoretical analysis. The explicit mathematical relation shows that the saturation value of the image-speckle contrast at a large aperture radius determines the roughness, while the variation of the contrast with the aperture radius determines the lateral-correlation length. In the experimental performance, we specially fabricate the random surface samples with Gaussian correlation. The square of the image-speckle contrast is measured versus the radius of the aperture in the 4f system, and the roughness and the lateral-correlation length are extracted by fitting the theoretical result to the experimental data. Comparison of the measurement with that by an atomic force microscope shows our method has a satisfying accuracy. (C) 2002 Optical Society of America.
Resumo:
A Nd:glass regenerative amplifier has been set up to generate the pumping pulse with variable pulse width for an optical parametric chirped-pulse amplification (OPCPA) laser system. Each pulse of the pulse train from a cw self-mode-locking femtosecond Ti:sapphire oscillator is stretched to approximate to300 ps at 1062 nm to be split equally and injected into a nonlinear crystal and the Nd:glass regenerative amplifier, as the chirped signal pulse train and the seed pulse train of the pumping laser system, respectively. By adjusting the cavity length of the regenerative amplifier directly, the width of amplified pulse could be varied continuously from approximate to300 ps to approximate to3 ns. The chirped signal pulse for the OPCPA laser system and the seed pulse for the pumping laser system come from the same oscillator, so that the time jitter between the signal pulse and the pumping pulse in optical parametric amplification stages could be <10 ps. (C) 2003 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We analyse further the entanglement purification protocol proposed by Feng et al. (Phys. Lett. A 271 (2000) 44) in the case of imperfect local operations and measurements. It is found that this protocol allows of higher error threshold. Compared with the standard entanglement purification proposed by Bennett et al. [Phys. Rev. Lett. 76 (1996) 722], it turns out that this protocol is remarkably robust against the influences of imperfect local operations and measurements.
Resumo:
Self-compression of femtosecond pulses in noble gases with an input power close to the self-focusing threshold has been investigated experimentally and theoretically. It is demonstrated that either multiphoton ionization (MPI) or space time focusing and self-steepening effects can induce pulse shortening, but they predominate at different beam intensities during the propagation. The latter effects play a key role in the final pulse self-compression. By choosing an appropriate focusing parameter, action distance of the space time focusing and self-steepening effects can be lengthened, which can promote a shock pulse structure with a duration as short as two optical cycles. It is also found that, for our calculation cases in which an input pulse power is close to the self-focusing threshold, either group velocity dispersion (GVD) or multiphoton absorption (MPA) has a negligible influence on pulse characteristics in the propagation process.
Resumo:
We apply a scattering theory of nonperturbative quantum electrodynamics to study the photoelectron angular distributions (PADs) of a hydrogen atom irradiated by linearly polarized laser light. The calculated PADs show main lobes and jetlike structure. Previous experimental studies reveal that in a set of above-threshold-ionization peaks when the absorbed-photon number increases by one, the jet number also increases by one. Our study confirms this experimental observation. Our calculations further predict that in some cases three more jets may appear with just one-more-photon absorption. With consideration of laser-frequency change, one less jet may also appear with one-more-photon absorption. The jetlike structure of PADs is due to the maxima of generalized phased Bessel functions, not an indication of the quantum number of photoelectron angular momentum states.
Resumo:
This paper studies the correlation properties of the speckles in the deep Fresnel diffraction region produced by the scattering of rough self-affine fractal surfaces. The autocorrelation function of the speckle intensities is formulated by the combination of the light scattering theory of Kirchhoff approximation and the principles of speckle statistics. We propose a method for extracting the three surface parameters, i.e. the roughness w, the lateral correlation length xi and the roughness exponent alpha, from the autocorrelation functions of speckles. This method is verified by simulating the speckle intensities and calculating the speckle autocorrelation function. We also find the phenomenon that for rough surfaces with alpha = 1, the structure of the speckles resembles that of the surface heights, which results from the effect of the peak and the valley parts of the surface, acting as micro-lenses converging and diverging the light waves.
Resumo:
Based on the rigorous formulation of integral equations for the propagations of light waves at the medium interface, we carry out the numerical solutions of the random light field scattered from self-affine fractal surface samples. The light intensities produced by the same surface samples are also calculated in Kirchhoff's approximation, and their comparisons with the corresponding rigorous results show directly the degree of the accuracy of the approximation. It is indicated that Kirchhoff's approximation is of good accuracy for random surfaces with small roughness value w and large roughness exponent alpha. For random surfaces with larger w and smaller alpha, the approximation results in considerable errors, and detailed calculations show that the inaccuracy comes from the simplification that the transmitted light field is proportional to the incident field and from the neglect of light field derivative at the interface.
Resumo:
A new approach based on the gated integration technique is proposed for the accurate measurement of the autocorrelation function of speckle intensities scattered from a random phase screen. The Boxcar used for this technique in the acquisition of the speckle intensity data integrates the photoelectric signal during its sampling gate open, and it repeats the sampling by a preset number, in. The average analog of the in samplings output by the Boxcar enhances the signal-to-noise ratio by root m, because the repeated sampling and the average make the useful speckle signals stable, while the randomly varied photoelectric noise is suppressed by 1/ root m. In the experiment, we use an analog-to-digital converter module to synchronize all the actions such as the stepped movement of the phase screen, the repeated sampling, the readout of the averaged output of the Boxcar, etc. The experimental results show that speckle signals are better recovered from contaminated signals, and the autocorrelation function with the secondary maximum is obtained, indicating that the accuracy of the measurement of the autocorrelation function is greatly improved by the gated integration technique. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We report an observation of femtosecond optical fluctuations of transmitted light when a coherent femtosecond pulse propagates through a random medium. They are a result of random interference among scattered waves coming from different trajectories in the time domain. Temporal fluctuations are measured by using cross-correlated frequency optical gating. It is shown that a femtosecond pulse will be broadened and distorted in pulse shape while it is propagating in random medium. The real and imaginary components of transmitted electric field are also distorted severely. The average of the fluctuated transmission pulses yields a smooth profile, probability functions show good agreement with Gaussian distribution. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The primary and secondary threshold intensities of ultraviolet-laser-induced preferential domain nucleation in nearly stoichiometric LiTaO3 is observed. The primary threshold is the minimum intensity to achieve the instantaneous preferential domain nucleation within the focus by the combined action of irradiation and electric fields. The secondary threshold is the minimum intensity to achieve the memory effect without any irradiation within the original focus. The space charge field created by the photoionization carriers is thought to be responsible for the instantaneous effect. The explanation based on the formation and transformation of extrinsic defect is presented for the memory effect. (c) 2008 American Institute of Physics.
Resumo:
用蒙特卡罗方法仿真了增益随机散射体中的非相干辐射,观察了非相干随机激光的特性。当抽运能量超过一定阈值时,散射体的整体辐射谱突然变窄;随着抽运能量继续增大,在光滑谱背景上会出现分离尖峰;散射体内空间某位置处频率组成不是单一的;辐射谱中某单个频率的空间方向分布和位置分布比较广。增益随机散射体中产生的非相干随机激光本质上既不同于无反馈的普通放大自发辐射,又不同于相干反馈形成的常规激光。解释了非相干随机激光辐射谱上出现分离尖峰的原因,出现这种现象是由于少数光子在增益散射体中经历较多次数散射后得到了相对充分的放大。