39 resultados para t quark
Resumo:
We present the results of an elliptic flow, v(2), analysis of Cu + Cu collisions recorded with the solenoidal tracker detector (STAR) at the BNL Relativistic Heavy Ion Collider at root s(NN) = 62.4 and 200 GeV. Elliptic flow as a function of transverse momentum, v(2)(p(T)), is reported for different collision centralities for charged hadrons h(+/-) and strangeness-ontaining hadrons K-S(0), Lambda, Xi, and phi in the midrapidity region vertical bar eta vertical bar < 1.0. Significant reduction in systematic uncertainty of the measurement due to nonflow effects has been achieved by correlating particles at midrapidity, vertical bar eta vertical bar < 1.0, with those at forward rapidity, 2.5 < vertical bar eta vertical bar < 4.0. We also present azimuthal correlations in p + p collisions at root s = 200 GeV to help in estimating nonflow effects. To study the system-size dependence of elliptic flow, we present a detailed comparison with previously published results from Au + Au collisions at root s(NN) = 200 GeV. We observe that v(2)(p(T)) of strange hadrons has similar scaling properties as were first observed in Au + Au collisions, that is, (i) at low transverse momenta, p(T) < 2 GeV/c, v(2) scales with transverse kinetic energy, m(T) - m, and (ii) at intermediate p(T), 2 < p(T) < 4 GeV/c, it scales with the number of constituent quarks, n(q.) We have found that ideal hydrodynamic calculations fail to reproduce the centrality dependence of v(2)(p(T)) for K-S(0) and Lambda. Eccentricity scaled v(2) values, v(2)/epsilon, are larger in more central collisions, suggesting stronger collective flow develops in more central collisions. The comparison with Au + Au collisions, which go further in density, shows that v(2)/epsilon depends on the system size, that is, the number of participants N-part. This indicates that the ideal hydrodynamic limit is not reached in Cu + Cu collisions, presumably because the assumption of thermalization is not attained.
Resumo:
We present the first measurements of identified hadron production, azimuthal anisotropy, and pion interferometry from Au + Au collisions below the nominal injection energy at the BNL Relativistic Heavy-Ion Collider (RHIC) facility. The data were collected using the large acceptance solenoidal tracker at RHIC (STAR) detector at root s(NN) = 9.2 GeV from a test run of the collider in the year 2008. Midrapidity results on multiplicity density dN/dy in rapidity y, average transverse momentum < p(T)>, particle ratios, elliptic flow, and Hanbury-Brown-Twiss (HBT) radii are consistent with the corresponding results at similar root s(NN) from fixed-target experiments. Directed flow measurements are presented for both midrapidity and forward-rapidity regions. Furthermore the collision centrality dependence of identified particle dN/dy, < p(T)>, and particle ratios are discussed. These results also demonstrate that the capabilities of the STAR detector, although optimized for root s(NN) = 200 GeV, are suitable for the proposed QCD critical-point search and exploration of the QCD phase diagram at RHIC.
Resumo:
Nuclear collisions recreate conditions in the universe microseconds after the Big Bang. Only a very small fraction of the emitted fragments are light nuclei, but these states are of fundamental interest. We report the observation of antihypertritons-comprising an antiproton, an antineutron, and an antilambda hyperon-produced by colliding gold nuclei at high energy. Our analysis yields 70 +/- 17 antihypertritons (3/Lambda(H) over bar) and 157 +/- 30 hypertritons (H-3(Lambda)). The measured yields of H-3(Lambda) (3/Lambda(H) over bar) and He-3 ((3)(He) over bar) are similar, suggesting an equilibrium in coordinate and momentum space populations of up, down, and strange quarks and antiquarks, unlike the pattern observed at lower collision energies. The production and properties of antinuclei, and of nuclei containing strange quarks, have implications spanning nuclear and particle physics, astrophysics, and cosmology.
Resumo:
The discrepancy between the PQCD calculation and the CLEO data for chi (c1)->gamma V (V=rho (0), omega, phi) stimulates our interest in exploring other mechanisms of chi (c1) decay. In this work, we apply an important non-perturbative QCD effect, i.e., the hadronic loop mechanism, to study chi (c1)->gamma V radiative decay. Our numerical result shows that the theoretical results including the hadronic loop contribution and the PQCD calculation of chi (c1)->gamma V are consistent with the corresponding CLEO data of chi (c1)->gamma V. We expect further experimental measurement of chi (c1)->gamma V, which will be helpful to test the hadronic loop effect on chi (c1) decay.
Resumo:
We present the multiplicity and pseudorapidity distributions of photons produced in Au + Au and Cu + Cu collisions at root(NN)-N-s = 62.4 and 200 GeV. The photons are measured in the region -3.7 < eta < -2.3 using the photon Multiplicity detector in the STAR experiment at RHIC. The number of photons produced per average number of participating nucleon pairs increases with the beam energy and is independent of (lie collision centrality. For collisions with similar average numbers of participating nucleons the photon multiplicities are observed to be similar for An + Au and Cu + Cu collisions at a given beam energy. The ratios of the number of charged particles to photons in the measured pseudorapidity range are found to be 1.4 +/- 0.1 and 1.2 +/- 0.1 for root(NN)-N-s = 62.4 and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of eta-Y-beam, are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Within the framework of a nonlinear chiral Lagrangian we explore the nontrivial nature of f(0)(600) and f(0)(1370) in terms of quarkonium, tetraquark and gluonium components. The mass constraints are obtained and the strong and radiative partial widths are calculated to demonstrate and discriminate these components. The static properties of f(0)(1500) and glueball are also studied. Our results are confronted with the experimental and theoretical data available as well as the upcoming measurements. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The axial charges of the proton and N(1440) are studied in the framework of an extended constituent quark model (CQM) including qqqq (q) over bar components. The cancellation between the contributions of qqq components and qqqq (q) over bar components gives a natural explanation to the experimental value of the proton axial charge, which can not be well reproduced in the traditional CQM even after the SU (6) circle times O(3) symmetry breaking is taken into account. The experimental value of axial charge pins down the proportion of the qqqq (q) over bar component in the proton to about 20%, which is consistent with the ones given by the strong decay widths and helicity amplitudes. Besides, an axial charge for N(1440) about 1 is predicted with 30% qqqq (q) over bar component, which is obtained by the strong and electromagnetic decays.
Resumo:
Charmed baryon spectroscopy has been studied under a string model. In this model, charmed baryons are composed of a diquark and a charm quark which are connected by a constant tension. In this diquark picture, the quantum numbers J(P) of confirmed baryons have been well assigned. Energies of the first and second orbital excitations have been predicted and compared with the experimental data. Meanwhile, diquark masses have been extracted in the background of charm quark which satisfy a splitting relation based on spin-spin interaction.
Resumo:
QCD求和规则是强子物理中的一种非常有效的非微扰方法,它从流的算符乘积展开开始,引入算符乘积展开式的真空期望值,把微扰和非微扰效应分开处理:微扰效应包含在展开系数中,非微扰效应则由算符的真空凝聚值表示。然后利用色散关系,把算符乘积展开式的真空期望值与一个含有强子物理参数的色散积分联系起来,这样就能够计算有关强子的物理量。 本文首先系统介绍了QCD求和规则的基本原理、基本方法,然后结合Dominguez,Gend和Paver的工作[14],展开式保留了的算符d=4凝聚值,采用新的参数化渐近自由阈以下谱函数的方法:即根据文献[25],用实验上了解得比较清楚的两个共振态的贡献来参数化谱函数,计算了s夸克的质量,得到了在动量标度为1Gev时,s夸克的跑动质量为219MeV。在误差范围内,这是一个理论上可以接受的结果,本文计算得到的跑动质量的值能为考察动量转移为1GeV时的质量效应提供参考。 关键词:QCD求和规则 算符乘积展开 色散关系 Borel变换 夸克质