121 resultados para statistical quantum field theory
Resumo:
Slip-line field solutions are presented for the ultimate load of submarine pipelines on a purely cohesive soil obeying Tresca yield criterion, taking into account of pipe embedment and pipe-soil contact friction. The derived bearing capacity factors for a smooth pipeline degenerate into those for the traditional strip-line footing when the embedment approaches zero. Parametric studies demonstrate that the bearing capacity factors for pipeline foundations are significantly influenced by the pipeline embedment and the pipe-soil frictional coefficient. With the increase of pipeline embedment, the bearing capacity factor Nc decreases gradually, and finally reaches the minimum value (4.0) when the embedment equals to pipeline radius. As such, if the pipeline is directly treated as a traditional strip footing, the bearing capacity factor Nc would be over evaluated. The ultimate bearing loads increase with increasing pipeline embedment and pipe-soil frictional coefficient.
Resumo:
Using a nonperturbative quantum scattering theory, the photoelectron angular distributions (PADs) from the multiphoton detachment of H- ions in strong, linearly polarized infrared laser fields are obtained to interpret recent experimental observations. In our theoretical treatment, the PADs in n-photon detachment are determined by the nth-order generalized phased Bessel (GPB) functions X-n(Z(f),eta). The advantage of using the GPB scenario to calculate PADs is its simplicity: a single special function (GPB) without any mixing coefficient can express PADs observed by recent experiments. Thus, the GPB scenario can be called a parameterless scenario.
Resumo:
In this paper, GdFeCo/DyFeCo exchange-coupled double-layer films used for center aperture type magnetically induced super resolution were investigated through experiments and theoretical calculation. The samples were prepared by magnetron sputtering method. The polar Kerr effect was measured to prove the spin reorientation of the readout layer. Theoretical study of magnetization profiles was performed on the basis of the mean-field theory and the continuum model. The theoretical results showed that the magnetization orientation of the readout layer changed gradually from in-plane to out-of-plane with the rise of the temperature. Theoretical analysis explained the experimental results successfully. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
在充分考虑了空间背景光辐射特性以及漫反射目标对相干光和自然光的不同反射特性的基础上,利用信号检测的统计学方法,导出了空间电荷耦合器件(CCD)凝视成像跟踪系统分别在激光照明主动跟踪模式和太阳光照明被动跟踪模式下的作用距离表达式。结果表明,空间CCD凝视成像跟踪系统在脉冲能量为1mJ的激光照明主动跟踪模式下可对1m2空间漫反射目标实现10km量级范围内的跟踪;而利用太阳光照明的被动跟踪模式下的跟踪距离可达几百千米。
Resumo:
采用Berreman特征矩阵方法,通过数值计算研究了双折射薄膜的反射、透射等光谱响应特性。依据电磁场理论的电场分量、磁场分量的界面连续条件,推导了光波在各向异性双轴薄膜中的Berreman转移矩阵,用以分析含有各向异性介质层的复杂薄膜系统的光学性质。这些矩阵递推关系包含了界面处的多点反射,适用于一般的各向异性的多层膜系统,包括入射媒质或基底为各向异性的情况。在文中给出了各向同性入射媒质双轴各向异性膜层一各向同性基底薄膜系统的计算结果,验证了该计算方法的可行性,以此作为进一步研究各向异性薄膜和相关光学薄膜器
Resumo:
The pressure dependence of the photoluminescence from ZnS : Mn2+, ZnS : Cu2+, and ZnS : Eu2+ nanoparticles were investigated under hydrostatic pressure up to 6 GPa at room temperature. Both the orange emission from the T-4(1) - (6)A(1) transition of Mn2+ ions and the blue emission from the DA pair transition in the ZnS host were observed in the Mn-doped samples. The measured pressure coefficients are -34.3(8) meV/GPa for the Mn-related emission and -3(3) meV/GPa for the DA band, respectively. The emission corresponding to the 4f(6)5d(1) - 4f(7) transition of Eu2+ ions and the emission related to the transition from the conduction band of ZnS to the t(2) level of Cu2+ ions were observed in the Eu- and Cu-doped samples, respectively. The pressure coefficient of the Eu-related emission was found to be 24.1(5) meV/GPa, while that of the Cu-related emission is 63.2(9) meV/GPa. The size dependence of the pressure coefficients for the Mn-related emission was also investigated. The Mn emission shifts to lower energies with increasing pressure and the shift rate (the absolute value of the pressure coefficient) is larger in the ZnS : Mn2+ nanoparticles than in bulk. Moreover, the absolute pressure coefficient increases with the decrease of the particle size. The pressure coefficients calculated based on the crystal field theory are in agreement with the experimental results. (C) 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Conventional quantum trajectory theory developed in quantum optics is largely based on the physical unravelling of a Lindblad-type master equation, which constitutes the theoretical basis of continuous quantum measurement and feedback control. In this work, in the context of continuous quantum measurement and feedback control of a solid-state charge qubit, we present a physical unravelling scheme of a non-Lindblad-type master equation. Self-consistency and numerical efficiency are well demonstrated. In particular, the control effect is manifested in the detector noise spectrum, and the effect of measurement voltage is discussed.
Resumo:
The pressure behavior of Mn2+ emission in the 10-, 4.5-, 3.5-, 3-, and 1-nm-sized ZnS:Mn2+ nanoparticles is investigated. The emission shifts to lower energies with increasing pressure, and the shift rate (the absolute value of the pressure coefficient) is larger in the ZnS:Mn2+ nanoparticles than in bulk. The pressure coefficient increases with the decrease in particle size with the 1-nm-sized particles as an exception. Pressure coefficient calculations based on the crystal field theory are in agreement with the experimental results. The pressure dependence of the emission intensity is also size dependent. For nanoparticles 1 and 3 nm in size, the luminescence intensity of Mn2+ decreases dramatically with increasing pressure, while, for bulk and particles with average sizes of 3.5, 4.5, and 10 nm, the luminescence intensity of Mn2+ is virtually unchanged at different pressures. The bandwidth increases faster with increasing pressure for smaller particles. This is perhaps due to the fact that there are more Mn2+ ions at the near-surface sites and because the phonon frequency is greater for smaller particles. These new phenomena provide some insight into the luminescence behavior of Mn2+ in ZnS:Mn2+ nanoparticles.
Resumo:
Temperature and pressure dependent measurements have been performed on 3.5 nm ZnS:Mn2+ nanoparticles. As temperature increases, the donor-acceptor (DA) emission of ZnS:Mn2+ nanoparticles at 440 nm shifts to longer wavelengths while the Mn2+ emission (T-4(1)-(6)A(1)) shifts to shorter wavelengths. Both the DA and Mn2+ emission intensities decrease with temperature with the intensity decrease of the DA emission being much more pronounced. The intensity decreases are fit well with the theory of thermal quenching. As pressure increases, the Mn2+ emission shifts to longer wavelengths while the DA emission wavelength remains almost constant. The pressure coefficient of the DA emission in ZnS:Mn2+ nanoparticles is approximately -3.2 meV/GPa, which is significantly smaller than that measured for bulk materials. The relatively weak pressure dependence of the DA emission is attributed to the increase of the binding energies and the localization of the defect wave functions in nanoparticles. The pressure coefficient of Mn2+ emission in ZnS:Mn2+ nanoparticles is roughly -34.3 meV/GPa, consistent with crystal field theory. The results indicate that the energy transfer from the ZnS host to Mn2+ ions is mainly from the recombination of carriers localized at Mn2+ ions. (C) 2002 American Institute of Physics.
Resumo:
The photoluminescence of Mn2+ in ZnS:Mn2+ nanoparticles with an average size of 4.5 nm has been measured under hydrostatic pressure from 0 to 6 GPa. The emission position is red-shifted at a rate of -33.3+/-0.6meV/GPa, which is in good agreement with the calculated value of -30.4meV/GPa using the crystal field theory. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A new method, a molecular thermodynamic model based on statistical mechanics, is employed to predict the hydrate dissociation conditions for binary gas mixtures with carbon dioxide, hydrogen, hydrogen sulfide, nitrogen, and hydrocarbons in the presence of aqueous solutions. The statistical associating fluid theory (SAFT) equation of state is employed to characterize the vapor and liquid phases and the statistical model of van der Waals and Platteeuw for the hydrate phase. The predictions of the proposed model were found to be in satisfactory to excellent agreement with the experimental data.
Resumo:
The photoluminescence of Cd1-xMnxTe with x=0.25, 0.40, and 0.60 is investigated at 77 K and different pressures. The pressure coefficients of the photoluminescence bands Cd0.75Mn0.25Te and Cd0.6Mn0.4Te are found to be positive and the magnitudes are about 8 X 10(-3) eV/kbar, which is in good agreement with the pressure coefficients of the interband transition. The pressure coefficient of the photoluminescence bands for Cd0.4Mn0.6Te is found to be -6 X 10(-3) eV/kbar, which is quite different from the pressure coefficient of the interband transition. The possible transition mechanism is discussed in terms of group theory and crystal field theory.