45 resultados para single cell protein
Resumo:
For a sphere electrode enclosed in finite-volume electrolyte, the measured current will deviate from the result predicted by the semi-infinite diffusion theory after some time. By random-walk simulation, we compared this time to the one needed for diffusion layer to reach electrolyte boundary, and revealed a clear signal delay of electrochemical current. Further we presented a quantitative description of this delay time. The simulation results suggested that the semi-infinite diffusion theory can even be applied when the theoretical diffusion layer grows to 1.28 electrolyte thicknesses, with an accuracy better than 0.5%. We attributed this time delay to the molecules' finite propagation velocity. Finally, we discussed how this delay can influence and facilitate the following electrochemical detection towards the nanometer and single-cell scale.
Resumo:
In this work, a new promoter, tetrasulfophthalocyanine (FeTSPc), one kind of environmental friendly material, was found to be very effective in both inhibiting self-poisoning and improving the intrinsic catalysis activity, consequently enhancing the electro-oxidation current during the electro-oxidation of formic acid. The cyclic voltammograms test showed that the formic acid oxidation peak current density has been increased about 10 times compared with that of the Pt electrode without FeTSPc. The electrochemical double potential step chronoamperometry measurements revealed that the apparent activity energy decreases from 20.64 kJ mol(-1) to 17.38 kJ mol(-1) after Pt electrode promoted by FeTSPc. The promoting effect of FeTSPc may be owed to the specific structure and abundant electrons of FeTSPc resulting in both the steric hindrance of the formation of poisoning species (CO) and intrinsic kinetic enhancement. In the single cell test, the performance of DFAFC increased from 80 mW cm(-2) mg(-1) (Pt) to 130 mW cm(-2) mg(-1) after the anode electrode adsorbed FeTSPc.
Resumo:
A novel wall-jet cell with parallel dual cylinder (PDC) microelectrodes was constructed and used for flow injection analysis (FLA). The detector takes the advantages of ''redox recycling'' between bipotentiostated microcylinder electrodes (- 0.4 V/SCE an
Resumo:
Aim: To investigate the effect of copper on the virulence of Edwardsiella tarda. Methods and Results: The pathogenic Edw. tarda strain TX5 was cultured under copper-stressed conditions and examined for any potential alteration in capacities that are associated with pathogenicity. The results showed that compared to untreated TX5, Cu-treated TX5 exhibits reduced planktonic and biofilm growth, an impaired ability to adhere to host mucus, modulation of host immune response, and dissemination in host blood and liver. Consistent with these observations, the overall bacterial virulence of Cu-treated TX5 is significantly attenuated. SDS-PAGE analyses of whole cell protein production showed that Cu-treated TX5 differs from the untreated TX5 in its production of at least one protein. Quantitative real time reverse transcriptase PCR analyses showed that copper treatment decreased the expression of virulence-associated genes encoding components of the type III and type VI secretion systems, the Eth haemolysin system, and the LuxS/AI-2 quorum-sensing system. Conclusions: Prolonged exposure to copper has multiple effects on TX5 and results in significant attenuation of bacterial virulence. Significance and Impact of the Study: The results of this study demonstrate that copper treatment has a broad and profound effect on the virulence-associated capacities of TX5, which is exerted at least in part at the transcription level. These findings provide new insights to the antimicrobial mechanism of copper.
Resumo:
为更好地使用锂离子电池组,更精确地估算电池的荷电状态(SOC),对锂离子电池组合前后进行了常温4.0 A充放电、常温7.5 A放电、-20℃下4.0 A放电以及55℃下4.0 A放电等实验测试。实验结果显示:锂离子电池成组后的充放电特性有所下降,电池组总容量下降为单体电池的90%左右,SOC偏低,工作电压的下降速率在放电末期急剧上升,可达平台区的50倍。对电池组的一致性进行了分析,得出锂离子电池成组时应充分考虑单体电池的一致性;在估算SOC时,采用电池组参数和单体电池参数相结合的方式。
Resumo:
国科图
Resumo:
In xenotransplantation, donor endothelium is the first target of immunological attack. Activation of the endothelial cell by preformed natural antibodies leads to platelet binding via the interaction of the glycoprotein (GP) Ib and von Willebrand factor (vWF). TMVA is a novel GPIb-binding protein purified from the venom of Trimeresurus mucrosquamatus. In this study, the inhibitory effect of TMVA on platelet aggregation in rats and the effect on discordant guinea pig-to-rat cardiac xenograft survival were investigated. Three doses (8, 20 or 40 mug/kg) of TMVA were infused intravenously to 30 rats respectively. Platelet aggregation rate was assayed 0.5, 12, and 24 h after TMVA administration. Wister rats underwent guinea pig cardiac cervical heterotopic transplantation using single dosing of TMVA (20 mug/kg, i.v., 0.5 h before reperfusion). Additionally, levels of TXB2 and 6-keto-PGF(1alpha) within rejected graft tissues were determined by radioimmunoassay. Treatment with TMVA at a dose of 20 or 40 mug/kg resulted in complete inhibition of platelet aggregation 0.5 h after TMVA administration. Rats receiving guinea pig cardiac xenografts after TMVA therapy had significantly prolonged xenograft survival. Histologic and immunopathologic analysis of cardiac xenografts in TMVA treatment group showed no intragraft platelet microthrombi formation and fibrin deposition. Additionally, the ratio of 6-keto-PGF(1alpha) to TXB2 in TMVA treatment group was significantly higher than those in control group. We conclude that the use of this novel GPIb-binding protein was very effective in preventing platelet microthrombi formation and fibrin deposition in a guinea pig-to-rat model and resulted in prolongation of xenograft survival. The increased ratio of PGI(2)/TXA(2) in TMVA treatment group may protect xenografts from the endothelial cell activation and contribute to the prolongation of xenograft survival.
Resumo:
White spot syndrome virus (WSSV) is a major pathogen in shrimp aquaculture. VP28 is one of the most important envelope proteins of WSSV. In this study, a recombinant antibody library, as single-chain fragment variable (scFv) format, displayed on phage was constructed using mRNA from spleen cells of mice immunized with-full-length VP28 expressed in Escherichia coli. After several rounds of panning, six scFv antibodies specifically binding to the epitopes in the N-terminal, middle, and C-terminal regions of VP28, respectively, were isolated from the library. Using these scFv antibodies as tools, the epitopes in VP28 were located on the envelope of the virion by immuno-electron Microscopy, Neutralization assay with these antibodies in vitro suggested that these epitopes may not be the attachment site of WSSV to host cell receptor. This study provides a new way to investigate the structure and function of the envelope proteins of WSSV. (c) 2008 Published by Elsevier Inc.
Resumo:
The performances of In0.65Ga0.35N single-junction solar cells with different structures, including various doping densities and thicknesses of each layer, have been simulated. It is found that the optimum efficiency of a In0.65Ga0.35N solar cell is 20.284% with 5 x 10(17) cm(-3) carrier concentration of the front and basic regions, a 130 nm thick p-layer and a 270 nm thick n-layer.
Resumo:
Na+-K+ ATPases have been observed and located by in situ AFM and single molecule recognition technique, topography and recognition imaging (TREC) that is a unique technique to specifically identify single protein in complex during AFM imaging. Na+-K+ ATPases were well distributed in the inner leaflet of cell membranes with about 10% aggregations in total recognized proteins. The height of Na+-K+ ATPases measured by AFM is in the range of 12-14 nm, which is very consistent with the cryoelectron microscopy result. The unbinding force between Na+-K+ ATPases in the membrane and anti-ATPases on the AFM tip is about 80 pN with the apparent loading rate at 40 nN/s.
Resumo:
The study of associations between two biomolecules is the key to understanding molecular function and recognition. Molecular function is often thought to be determined by underlying structures. Here, combining a single-molecule study of protein binding with an energy-landscape-inspired microscopic model, we found strong evidence that biomolecular recognition is determined by flexibilities in addition to structures. Our model is based on coarse-grained molecular dynamics on the residue level with the energy function biased toward the native binding structure ( the Go model). With our model, the underlying free-energy landscape of the binding can be explored. There are two distinct conformational states at the free-energy minimum, one with partial folding of CBD itself and significant interface binding of CBD to Cdc42, and the other with native folding of CBD itself and native interface binding of CBD to Cdc42. This shows that the binding process proceeds with a significant interface binding of CBD with Cdc42 first, without a complete folding of CBD itself, and that binding and folding are then coupled to reach the native binding state.
Resumo:
We study the dynamics of protein folding via statistical energy-landscape theory. In particular, we concentrate on the local-connectivity case with the folding progress described by the fraction of native conformations. We found that the first passage-time (FPT) distribution undergoes a dynamic transition at a temperature below which the FPT distribution develops a power-law tail, a signature of the intermittent nonexponential kinetic phenomena for the folding dynamics. Possible applications to single-molecule dynamics experiments are discussed.
Resumo:
Discovery and development of new pharmaceuticals from marine organisms are attracting increasing interest. Several agents derived from marine organisms are under preclinical and clinical evaluation as potential anticancer drugs. We extracted and purified a novel anti-tumor protein from the coelomic fluid of Meretrix meretrix Linnaeus by ammonium sulphate fractionation, ion exchange and hydrophobic interaction chromatography. The molecular weight of the highly purified protein, designated MML, was 40 kDa as determined by SDS-PAGE analysis. MML exhibited significant cytotoxicity to several cancer cell types, including human hepatoma BEL-7402, human breast cancer MCF-7 and human colon cancer HCT116 cells. However, no inhibitory effect was found when treating murine normal fibroblasts NIH3T3 and benign human breast MCF-10A cells with MML. The cell death induced by MML was characterized by cell morphological changes. The induction of apoptosis of BEL-7402 cells by MML was weak by DNA ladder assay. The possible mechanisms of its anti-tumor effect might be the changes in cell membrane permeability and inhibition of tubulin polymerization. MML may be developed as a novel, highly selective and effective anti-cancer drug.
Resumo:
HS1 (haematopoietic lineage cell-specific gene protein 1), a prominent substrate of intracellular protein tyrosine kinases in haematopoietic cells, is implicated in the immune response to extracellular stimuli and in cell differentiation induced by cytokines. Although HS1 contains a 37-amino acid tandem repeat motif and a C-terminal Src homology 3 domain and is closely related to the cortical-actin-associated protein cortactin, it lacks the fourth repeat that has been shown to be essential for cortactin binding to filamentous actin (F-actin). In this study, we examined the possible role of HS1 in the regulation of the actin cytoskeleton. Immunofluorescent staining demonstrated that HS1 co-localizes in the cytoplasm of cells with actin-related protein (Arp) 2/3 complex, the primary component of the cellular machinery responsible for de novo actin assembly. Furthermore, recombinant HS1 binds directly to Arp2/3 complex with an equilibrium dissociation constant (K-d) of 880 nM. Although HS1 is a modest F-actin-binding protein with a Kd of 400 nM, it increases the rate of the actin assembly mediated by Arp2/3 complex, and promotes the formation of branched actin filaments induced by Arp2/3 complex and a constitutively activated peptide of N-WASP (neural Wiskott-Aldrich syndrome protein). Our data suggest that HS1, like cortactin, plays an important role in the modulation of actin assembly.