84 resultados para paraconsistent model theory
Resumo:
The initial-value problem of a forced Burgers equation is numerically solved by the Fourier expansion method. It is found that its solutions finally reach a steady state of 'laminar flow' which has no randomness and is stable to disturbances. Hence, strictly speaking, the so-called Burgers turbulence is not a turbulence. A new one-dimensional model is proposed to simulate the Navier-Stokes turbulence. A series of numerical experiments on this one-dimensional turbulence is made and is successful in obtaining Kolmogorov's (1941) k exp(-5/3) inertial-range spectrum. The (one-dimensional) Kolmogorov constant ranges from 0.5 to 0.65.
Resumo:
A new method is proposed to solve the closure problem of turbulence theory and to drive the Kolmogorov law in an Eulerian framework. Instead of using complex Fourier components of velocity field as modal parameters, a complete set of independent real parameters and dynamic equations are worked out to describe the dynamic states of a turbulence. Classical statistical mechanics is used to study the statistical behavior of the turbulence. An approximate stationary solution of the Liouville equation is obtained by a perturbation method based on a Langevin-Fokker-Planck (LFP) model. The dynamic damping coefficient eta of the LFP model is treated as an optimum control parameter to minimize the error of the perturbation solution; this leads to a convergent integral equation for eta to replace the divergent response equation of Kraichnan's direct-interaction (DI) approximation, thereby solving the closure problem without appealing to a Lagrangian formulation. The Kolmogorov constant Ko is evaluated numerically, obtaining Ko = 1.2, which is compatible with the experimental data given by Gibson and Schwartz, (1963).
Resumo:
The stationary two-dimensional (x, z) near wakes behind a flat-based projectile which moves at a constant mesothermal speed (V∞) along a z-axis in a rarefied, fully ionized, plasma is studied using the wave model previously proposed by one of the authors (VCL). One-fluid theory is used to depict the free expansion of ambient plasma into the vacuum produced behind a fast-moving projectile. This nonstationary, one-dimensional (x, t) flow which is approximated by the K-dV equation can be transformed, through substitution, t=z/V∞, into a stationary two-dimensional (x, z) near wake flow seen by an observer moving with the body velocity (V∞). The initial value problem of the K-dV equation in (x, t) variables is solved by a specially devised numerical method. Comparisons of the present numerical solution for the asymptotically small and large times with available analytical solutions are made and found in satisfactory agreements.
Resumo:
In this paper an analysis of the kinetic theory of the continuous-wave flow chemical lasers(CWFCL) is presented with emphasis being laid on the effects of inhomogeneous broadeningon CWFCL's performance. The results obtained are applicable to the case where laser fre-quency is either coincident or incoincident with that of the eenter of the line shape. This rela-tion has been,compared with that of the rate model in common use. These two models are almostidentical as the broadening parameter η is larger than 1. The smaller the value of η, thegreater the difference between the results of these two models will be. For fixed η, the dif-ferences between fhe results of the two models increase with the increase of the frequencyshift parameter ξ. When η is about less than 0.2. the kinetic model can predict exactly the in-homogeneous broadening effects,while the rate model cannot.
Resumo:
Based on the three-dimensional elastic inclusion model proposed by Dobrovolskii, we developed a rheological inclusion model to study earthquake preparation processes. By using the Corresponding Principle in the theory of rheologic mechanics, we derived the analytic expressions of viscoelastic displacement U(r, t) , V(r, t) and W(r, t), normal strains epsilon(xx) (r, t), epsilon(yy) (r, t) and epsilon(zz) (r, t) and the bulk strain theta (r, t) at an arbitrary point (x, y, z) in three directions of X axis, Y axis and Z axis produced by a three-dimensional inclusion in the semi-infinite rheologic medium defined by the standard linear rheologic model. Subsequent to the spatial-temporal variation of bulk strain being computed on the ground produced by such a spherical rheologic inclusion, interesting results are obtained, suggesting that the bulk strain produced by a hard inclusion change with time according to three stages (alpha, beta, gamma) with different characteristics, similar to that of geodetic deformation observations, but different with the results of a soft inclusion. These theoretical results can be used to explain the characteristics of spatial-temporal evolution, patterns, quadrant-distribution of earthquake precursors, the changeability, spontaneity and complexity of short-term and imminent-term precursors. It offers a theoretical base to build physical models for earthquake precursors and to predict the earthquakes.
Resumo:
The problem of predicting sediment transportation by water waves is treated analytically with the rate of wave energy dissipation or wave damping. With resorting to the theory of shallow water waves and the basis of Yamamoto’s Coulomb-damped poroelastic model, the Boussinesq-type equation has been derived over a variation depth bed. For convenience Cnoidal wave is just discussed, The Cnoidal wave with complex wave length and wave velocity, which are as a function of wave frequency, water depth, permeability, Poisson’s ratio and complex elastic moduli of bed soil, is applied to analyse the rate of sediment transportation. Considering the sediment transportation depended on the shear stress near-bed or the horizontal velocity, the conclusion of Yamamoto’s experiment in clay bed has been extended to general situation. It could be figured out that the model should provide a method to avoid the undistinguishable factors during sediment transport processes and relate mass transport with the sediment peculiarities.
Resumo:
A new strain gradient theory which is based on energy nonlocal model is proposed in this paper, and the theory is applied to investigate the size effects in thin metallic wire torsion, ultra-thin beam bending and micro-indentation of polycrystalline copper. First, an energy nonlocal model is suggested. Second, based on the model, a new strain gradient theory is derived. Third, the new theory is applied to analyze three representative experiments.
Resumo:
The technology of laser quenching is widely used to improve the surface properties of steels in surface engineering. Generally, laser quenching of steels can lead to two important results. One is the generation of residual stress in the surface layer. In general, the residual stress varies from the surface to the interior along the quenched track depth direction, and the residual stress variation is termed as residual stress gradient effect in this work. The other is the change of mechanical properties of the surface layer, such as the increases of the micro-hardness, resulting from the changes of the microstructure of the surface layer. In this work, a mechanical model of a laser-quenched specimen with a crack in the middle of the quenched layer is developed to quantify the effect of residual stress gradient and the average micro-hardness over the crack length on crack tip opening displacement (CTOD). It is assumed that the crack in the middle of the quenched layer is created after laser quenching, and the crack can be a pre-crack or a defect due to some reasons, such as a void, cavity or a micro-crack. Based on the elastic-plastic fracture mechanics theory and using the relationship between the micro-hardness and yield strength, a concise analytical solution, which can be used to quantify the effect of residual stress gradient and the average micro-hardness over the crack length resulting from laser quenching on CTOD, is obtained. The concise analytical solution obtained in this work, cannot only be used as a means to predict the crack driving force in terms of the CTOD, but also serve as a baseline for further experimental investigation of the effect after laser-quenching treatment on fracture toughness in terms of the critical CTOD of a specimen, accounting for the laser-quenching effect. A numerical example presented in this work shows that the CTOD of the quenched can be significantly decreased in comparison with that of the unquenched. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The degradation of image quality caused by aberrations of projection optics in lithographic tools is a serious problem in optical lithography. We propose what we believe to be a novel technique for measuring aberrations of projection optics based on two-beam interference theory. By utilizing the partial coherent imaging theory, a novel model that accurately characterizes the relative image displacement of a fine grating pattern to a large pattern induced by aberrations is derived. Both even and odd aberrations are extracted independently from the relative image displacements of the printed patterns by two-beam interference imaging of the zeroth and positive first orders. The simulation results show that by using this technique we can measure the aberrations present in the lithographic tool with higher accuracy. (c) 2006 Optical Society of America.
Resumo:
The Z-scan technique is useful for measuring the nonlinear refractive index of thin films. In conventional Z-scan theories, two effects are often ignored, namely the losses due to the internal multi-interference and the nonlinear absorption inside the sample. Therefore, the theories are restricted to relatively thick films. For films thinner than about 100 nm, the two effects become significant, and thus cannot be ignored. In the present work, we present a Z-scan theory that takes both effects into account. The proposed model calculation is suitable for optical nonlinear films of nanometric thickness. With numerical simulations, we demonstrate dramatic deviations from the conventional Z-scan calculations.
Extended effective medium model for refractive indices of thin films with oblique columnar structure
Resumo:
The refractive indices of thin films, containing dielectric and voids in an oblique columnar structure, are modeled by extended effective medium in the quasi-static limit. The dielectric function is shown to be strongly dependent on the angle of incidence and on the columnar orientation for p-polarized light. This model is applied to model ZrO2 thin films with oblique columnar structures and the computed results, with the Maxwell Garnett, the Bragg-Pippard, and the Bruggeman formalisms, have been given. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The evolutionary relationships of species of Danio and the monophyly and phylogenetic placement of the genus within the family Cyprinidae and subfamily Rasborinae provide fundamentally important phyloinformatics necessary for direct evaluations of an array of pertinent questions in modern comparative biology. Although the genus Danio is not one of the most diverse within the family, Danio rerio is one of the most important model species in biology. Many investigations have used this species or presumed close relatives to address specific questions that have lasting impact on the hypothesis and theory of development in vertebrates. Largely lacking from this approach has been a holistic picture of the exact phylogenetic or evolutionary relationships of this species and its close relatives. One thing that has been learned over the previous century is that many organismal attributes (e.g., developmental pathways, ecologies, behaviors, speciation) are historically constrained and their origins and functions are best explained via a phylogenetic approach. Herein, we provide a molecular evaluation of the phylogenetic placement of the model species Danio rerio within the genus Danio and among hypothesized closely related species and genera. Our analysis is derived from data using two nuclear genes (RAG1, rhodopsin) and five mitochondrial genes (ND4, ND4L, ND5, COI, cyt b) evaluated using parsimony, maximum likelihood, and Bayesian analyses. The family Cyprinidae is resolved as monophyletic but the subfamily Rasborinae (priority over Danioinae) is an unnatural assemblage. Danio is identified as a monophyletic group sister to a clade inclusive of the genera Chela, Microrasbora, Devario, and Inlecypris, not Devario nor Esomus as hypothesized in previous studies. Danio rerio is sister to D. kyathit among the species of Danio evaluated in this analysis. Microrasbora and Rasbora are non-monophyletic assemblages; however, Boraras is monophyletic.
Resumo:
The work was supported in part by the National Natural Science Foundation of China under Grant 60536010, Grant 60606019, Grant 60777029, and Grant 60820106004, and in part by the National Basic Research Program of China under Grant 2006CB604902, Grant 2006CB302806, and Grant 2006dfa11880.
Resumo:
The Rashba spin-orbit splitting of a hydrogenic donor impurity in GaAs/GaAlAs quantum wells is investigated theoretically in the framework of effective-mass envelope function theory. The Rashba effect near the interface between GaAs and GaAlAs is assumed to be a linear relation with the distance from the quantum well side. We find that the splitting energy of the excited state is larger and less dependent on the position of the impurity than that of the ground state. Our results are useful for the application of Rashba spin-orbit coupling to photoelectric devices.
Resumo:
Biomimetic pattern recogntion (BPR), which is based on "cognition" instead of "classification", is much closer to the function of human being. The basis of BPR is the Principle of homology-continuity (PHC), which means the difference between two samples of the same class must be gradually changed. The aim of BPR is to find an optimal covering in the feature space, which emphasizes the "similarity" among homologous group members, rather than "division" in traditional pattern recognition. Some applications of BPR are surveyed, in which the results of BPR are much better than the results of Support Vector Machine. A novel neuron model, Hyper sausage neuron (HSN), is shown as a kind of covering units in BPR. The mathematical description of HSN is given and the 2-dimensional discriminant boundary of HSN is shown. In two special cases, in which samples are distributed in a line segment and a circle, both the HSN networks and RBF networks are used for covering. The results show that HSN networks act better than RBF networks in generalization, especially for small sample set, which are consonant with the results of the applications of BPR. And a brief explanation of the HSN networks' advantages in covering general distributed samples is also given.