42 resultados para molecular stability
Resumo:
On the basis of the thermodynamics of Gibbs, the spinodal for the quasibinary system was derived in the framework of the Sanchez-Lacombe lattice fluid theory. All of the spinodals were calculated based on a model polydisperse polymer mixture, where each polymer contains three different molecular weight subcomponents. According to our calculations, the spinodal depends on both weight-average ((M) over bar (w)) and number-average ((M) over bar (n)) molecular weights, whereas that of the z-average molecular weight is invisible. Moreover, the extreme of the spinodal decreases when the polydispersity index (eta = (M) over bar (w)/(M) over bar (n)) of the polymer increases. The effect of polydispersity on the spinodal decreases when the molecular weight gets larger and can be negligible at a certain large molecular weight. It is well-known that the influence of polydispersity on the phase equilibrium (coexisting curve, cloud point curves) is much more pronounced than on the spinodal. The effect of M, on the spinodal is discussed as it results from the infuluence of composition temperatures, molecular weight, and the latter's distribution on free volume. An approximate expression, which is in the assumptions of v* v(1)* = v(2)* and 1/r --> 0 for both of the polymers, was also derived for simplification. It can be used in high molecular weight, although it failed to make visible the effect of number-average molecular weight on the spinodal.
Resumo:
With the aid of thermodynamics of Gibbs, the expression of the spinodal was derived for the polydisperse polymer-solvent system in the framework of Sanchez-Lacombe Lattice Fluid Theory (SLLFT). For convenience, we considered that a model polydisperse polymer contains three sub-components. According to our calculation, the spinodal depends on both weight-average ((M) over bar (w)) and number-average ((M) over bar (n)) molecular weights of the polydisperse polymer, but the z-average molecular weight ((M) over bar (z)) dependence on the spinodal is invisible. The dependence of free volume on composition, temperature, molecular weight, and its distribution results in the effect of (M) over bar (n) on the spinodal. Moreover, it has been found that the effect of changing (M) over bar (w) on the spinodal is much bigger than that of changing (M) over bar (n) and the extrema of the spinodal increases with the rise of the weight-average molecular weight of the polymer in the solutions with upper critical solution temperature (UCST). However, the effect of polydispersity on the spinodal can be neglected for the polymer with a considerably high weight-average molecular weight. A more simple expression of the spinodal for the polydisperse polymer solution in the framework of SLLFT was also derived under the assumption of upsilon(*)=upsilon(1)(*)=upsilon(2)(*) and (1/r(1)(0))-(1/r(2i)(0))-->(1/r(1)(0)).
Resumo:
The molecular structural parameters of indophenol and its derivatives were calculated by semi-empirical molecular orbital quantum chemical method,The relation between molecular structural parameters and formal potentials was analyzed by principal factor analysis and multiple Linear regression method. It was found that the formal potential of indophenols has a good relation with two-center electron exchange energy, E-ex (2), resonance energy of O-C bond, E-ex (C-1-O), and molecular ionization potential, I-p, among 19 moleclular structural parameters. The regression equation is E-0' = 1. 47 x 10 (-3) E-ex (two) - 5. 74 x 10 (-2) E-ex (C-1 - O) - 1. 41 x 10 (-2) I-p with RC = 0. 9999 and SD = 0. 00424. It was confirmed by the relation between structure parameters and formal potentials, and the thermodynamic stability of its intermediate products that the H (+) ionization is prior to the electron transfer step in the oxidation mechanism.
Resumo:
Seven new binuclear titanocenes with different linking bridges, unsubstituted or substituted on the Cp rings, were synthesized and tested for their effect on ethylene polymerization in the presence of MAO. The polyethylenes thus obtained had broad MWD or even bimodal GPC curves, as compared with that from two reference mononuclear titanocenes. This is explained by the difference in degree of steric hindrance around the active center sites imposed by the bulky substituted ligands assuming different configurations in the rotation of the catalyst molecules. Lower polymerization temperatures alleviate the effect of these configuration differences, as reflected in change in MW and (M) over bar(w)/(M) over bar(n). This effect is not caused by decomposition or disproportionation of the binuclear titanocenes as evidenced by the stability of the catalyst.
Resumo:
Supported catalysts, consisting of SiW12 immobilized on hexagonal mesoporous silica (HMS) and its aluminum-substituted derivative (MCM-41) with different loadings and calcination temperatures, have been prepared and characterized by X-ray diffraction, FT-IR and NH3-temperature programmed desorption. It is shown that SiW12 retains the Keggin structure on the mesoporous molecular sieves and no HPA crystal phase is developed, even at SiW12 loadings as high as 50 wt%. In the esterification of acetic acid by n-butanol, supported catalysts exhibit a higher catalytic activity and stability and held some promise of practical application. In addition, experimental results indicate that the loaded amount of SiW12 and the calcination temperatures have a significant influence on the catalytic activity, and the existence of aluminum has also an effect on the properties of supported catalysts.
Resumo:
In this work, the effects of radiation on polytetrafluoroethylene (PTFE) samples with different crystallinity were studied. Using Suwa's equation for calculating the number-average molecular weight of PTFE, the radiation-induced reduction in molecular weight was followed and the G values for scission of PTFE were also obtained on the basis of the changes in molecular weight. The G(scission) for as-polymerized PTFE was 2.15 +/- 0.01, whereas for sintered sample, which has a relative low crystallinity, G(scission) = 6.0 +/- 0.14.
Resumo:
By examining the changes in melting temperature, heat of fusion, tensile strength and ultimate elongation at 150-degrees-C, and weight loss, radiation effects on perfluoroalkoxy resins (PFA) were investigated. The results show that at the temperatures used here the predominant effect caused by radiation on PFA is degradation of the molecular weight. The radiation stability is much better than that of polytetrafluoroethylene, however.
Resumo:
As a typical example of a polymer degraded by radiation, the radiation stability of PTFE was observed to depend upon irradiation conditions. Increases in irradiation temperature and crystallinity were found to increase its radiation stability whereas increase in the concentration of oxygen in the system over a certain range was observed to have little effect on radiation-induced reactions of PTFE as measured by changes in number-average molecular weight, melting temperature and crystallinity.
Resumo:
We studied several inclusion complexes of beta-CD by means of molecular mechanical calculation. The inclusion process and the driving force were discussed, and the conclusion on stability agrees with the results of electrochemical experiments.
Resumo:
Phenolic marine natural product is a kind of new potential aldose reductase inhibitors (ARIs). In order to investigate the binding mode and inhibition mechanism, molecular docking and dynamics studies were performed to explore the interactions of six phenolic inhibitors with human aldose reductase (hALR2). Considering physiological environment, all the neutral and other two ionized states of each phenolic inhibitor were adopted in the simulation. The calculations indicate that all the inhibitors are able to form stable hydrogen bonds with the hALR2 active pocket which is mainly constructed by residues TYR48, HIS110 and TRP111, and they impose the inhibition effect by occupying the active space. In all inhibitors, only La and its two ionized derivatives La_ion1 and La_ion2, in which neither of the ortho-hydrogens of 3-hydroxyl is substituted by Br, bind with hALR2 active residues using the terminal 3-hydroxyl. While, all the other inhibitors, at least one of whose ortho-sites of 3- and 6-hydroxyls are substituted by Br substituent which take much electron-withdrawing effect and steric hindrance, bind with hALR2 through the lactone group. This means that the Br substituent can effectively regulate the binding modes of phenolic inhibitors. Although the lactone bound inhibitors have relatively high RMSD values, our dynamics study shows that both binding modes are of high stability. For each inhibitor molecule, the ionization does not change its original binding mode, but it does gradually increase the binding free energy, which reveals that besides hydrogen bonds, the electrostatic effect is also important to the inhibitor–hALR2 interaction.