47 resultados para modulation transfer function (MTF)
Resumo:
The modulation of superlattice band structure via periodic delta-doping in both well and barrier layers have been theoretically investigated, and the importance of interaction between the delta-function potentials in the well layers and those in the barrier layers on SL band structure have been revealed. It is pointed out that the energy dispersion relation Eq. (3) given in [G. Ihm, S.K. Noh, J.I. Lee, J.-S. Hwang, T.W. Kim, Phys. Rev. B 44 (1991) 6266] is an incomplete one, as the interaction between periodic delta-doping in both well and barrier layers had been overlooked. Finally, we have shown numerically that the electron states of a GaAs/Ga0.7Al0.3As superlattice can be altered more efficiently by intelligent tuning the two delta-doping's positions and heights. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A quantum chemistry based Green's function formulation of long-range charge transfer in deoxyribose nucleic acid (DNA) double helix is proposed. The theory takes into account the effects of DNA's electronic structure and its incoherent interaction with aqueous surroundings. In the implementation, the electronic tight-binding parameters for unsolvated DNA molecules are determined at the HF/6-31G* level, while those for individual nucleobase-water couplings are at a semiempirical level by fitting with experimental redox potentials. Numerical results include that: (i) the oxidative charge initially at the donor guanine site does hop sequentially over all guanine sites; however, the revealed rates can be of a much weaker distance dependence than that described by the ordinary Ohm's law; (ii) the aqueous surroundings-induced partial incoherences in thymine/adenine bridge bases lead them to deviate substantially from the superexchange regime; (iii) the time scale of the partially incoherent hole transport through the thymine/adenine pi stack in DNA is about 5 ps. (C) 2002 American Institute of Physics.
Resumo:
A nonequilibrium Green's-function formalism is employed to study the time-dependent transport through resonant-tunneling structures. With this formalism, we derive a time-dependent Landauer-Buttiker formula that guarantees current conservation and gauge invariance. Furthermore, we apply the formula to calculate the response behaviors of the resonant-tunneling structures in the presence of rectangular-pulse and harmonic-modulation fields. The results show that the displacement current plays the role of retarding the tunneling current.
Resumo:
In this paper, the detection wavelength and the electron-hole wave function overlap of InAs/IrxGa1-xSb type II superlattice photodetectors are numerically calculated by using the envelope function and the transfer matrix methods. The band offset is dealt with by employing the model solid theory, which already takes into account the lattice mismatch between InAs and InxGa1-xSb layers. Firstly, the detection wavelength and the wave function overlap are investigated in dependence on the InAs and InxGa1-xSb layer thicknesses, the In mole fraction, and the periodic number. The results indicate that the detection wavelength increases with increasing In mole fraction, InAs and InxGa1-xSb layer thicknesses, respectively. When increasing the periodic number, the detection wavelength first increases distinctly for small periodic numbers then increases very slightly for large period numbers. Secondly, the wave function overlap diminishes with increasing InAs and InxGa1-xSb layer thicknesses, while it enhances with increasing In mole fraction. The dependence of the wave function overlap on the periodic number shows the same trend as that of the detection wavelength on the periodic number. Moreover, for a constant detection wavelength, the wave function overlap becomes greater when the thickness ratio of the InAs over InxGa1-xSb is larger.
Resumo:
Tetra-n-butyl-ammonium bromide (TBAB) clathrate hydrate slurry (CHS) is one kind of secondary refrigerants, which is promising to be applied into air-conditioning or latent-heat transportation systems as a thermal storage or cold carrying medium for energy saving. It is a solid-liquid two phase mixture which is easy to produce and has high latent heat and good fluidity. In this paper, the heat transfer characteristics of TBAB slurry were investigated in a horizontal stainless steel tube under different solid mass fractions and flow velocities with constant heat flux. One velocity region of weakened heat transfer was found. Moreover, TBAB CHS was treated as a kind of Bingham fluids, and the influences of the solid particles, flow velocity and types of flow on the forced convective heat transfer coefficients of TBAB CHS were investigated. At last, criterial correlations of Nusselt number for laminar and turbulent flows in the form of power function were summarized, and the error with experimental results was within 20%.
Resumo:
By neutron diffraction and other experiments, we have found that oxygen ions in YBCO can diffuse out of the sample in vacuo at room and low temperature, while the T(c) decreases greatly. We have also found that if the vacuum-deoxidation process lasts for several days there will be a damping oscillation of T(c) with time (t), and higher vacuum corresponds to a greater amplitude and a shorter period. We tentatively think that T(c) should satisfy the following function: T(c0) is-proportional-to T(c)e(-betat)cos (omegat + phi); it may be due to the diffusion of oxygen and the saturation of the valence state.
Resumo:
A transfer matrix approach is presented for the study of electron conduction in an arbitrarily shaped cavity structure embedded in a quantum wire. Using the boundary conditions for wave functions, the transfer matrix at an interface with a discontinuous potential boundary is obtained for the first time. The total transfer matrix is calculated by multiplication of the transfer matrix for each segment of the structure as well as numerical integration of coupled second-order differential equations. The proposed method is applied to the evaluation of the conductance and the electron probability density in several typical cavity structures. The effect of the geometrical features on the electron transmission is discussed in detail. In the numerical calculations, the method is found to be more efficient than most of the other methods in the literature and the results are found to be in excellent agreement with those obtained by the recursive Green's function method.
Resumo:
N-shaped negative differential resistance (NDR) with a high peak-to-valley ratio (PVR) is observed in a GaAs-based modulation-doped field effect transistor (MODFET) with InAs quantum dots (QDs) in the barrier layer (QDFET) compared with a GaAs MODFET. The NDR is explained as the real-space transfer (RST) of high-mobility electrons in a channel into nearby barrier layers with low mobility, and the PVR is enhanced dramatically upon inserting the QD layer. It is also revealed that the QD layer traps holes and acts as a positively charged nano-floating gate after a brief optical illumination, while it acts as a negatively charged nano-floating gate and depletes the adjacent channel when charged by the electrons. The NDR suggests a promising application in memory or high-speed logic devices for the QDFET structure.
Resumo:
Based upon a hybrid ferromagnet/semiconductor structure consisting of two-dimensional electron gas and a pair of surface ferromagnetic stripes on top, we have theoretically investigated the effect of in-plane stray field omitted frequently in previous studies on the spin-dependent ballistic transport properties in hybrid structure. It is demonstrated here that, in combination with an external-controllable electrostatic modulation, the concerned structure shows a similar function as a lateral spin-polarized resonant tunneling device, where the strong spin-filtering effect occurs and nearly single-mode polarization is anticipated for the proper modulation. More importantly, the spin polarity of transmission electron can be easily transferred from one extreme to the other by switching the magnetization of stripes, showing the promising application as an efficient spin aligner in the developing semiconductor spintronics.
Resumo:
Femtosecond time-resolved studies using fluorescence depletion spectroscopy were performed on Rhodamine 700 in acetone solution and on Oxazine 750 in acetone and formamide solutions at different temperatures. The experimental curves that include both fast and slow processes have been fitted using a biexponential function. Time constants of the fast process, which corresponds to the intramolecular vibrational redistribution (IVR) of solute molecules, range from 300 to 420 fs and increase linearly as the temperature of the environment decreases. The difference of the average vibrational energy of solute molecules in the ground state at different temperatures is a possible reason that induces this IVR time-constant temperature dependence. However, the time constants of the slow process, which corresponds to the energy transfer from vibrational hot solute molecules to the surroundings occurred on a time scale of 1-50 ps, changed dramatically at lower temperature, nonlinearly increasing with the decrease of temperature. Because of the C-H...O hydrogen-bond between acetone molecules, it is more reasonable that acetone molecules start to be associated, which can influence the energy transfer between dye molecules and acetone molecules efficiently, even at temperatures far over the freezing point.
Resumo:
The affinity and specificity of drugs with human serum albumin (HSA) are crucial factors influencing the bioactivity of drugs. To gain insight into the carrier function of HSA, the binding of levamlodipine with HSA has been investigated as a model system by a combined experimental and theoretical/computational approach. The fluorescence properties of HSA and the binding parameters of levamlodipine indicate that the binding is characterized by one binding site with static quenching mechanism, which is related to the energy transfer. As indicated by the thermodynamic analysis, hydrophobic interaction is the predominant force in levamiodipine-HSA complex, which is in agreement with the computational results. And the hydrogen bonds can be confirmed by computational approach between levamlodipine and HSA. Compared to predicted binding energies and binding energy spectra at seven sites on HSA, levamlodipine binding HSA at site I has a high affinity regime and the highest specificity characterized by the largest intrinsic specificity ratio (ISR). The binding characteristics at site I guarantee that drugs can be carried and released from HSA to carry out their specific bioactivity.
Resumo:
A study of potassium ion transfer across a water \ 1,2-dichloroethane (W \ DCE) interface facilitated by dibenzo-18-crown-6 (DB18C6) with various phase volume ratio systems is presented. The key point was that a droplet of aqueous solution containing a redox couple, Fe(CN)(6)(3-)/Fe(CN)(6)(4-), with equal molar ratio, was first attached to a platinum electrode surface, and the resulting droplet electrode was then immersed into the organic solution containing a hydrophobic electrolyte to construct a platinum electrode/aqueous phase/organic phase system. The interfacial potential of the W \ DCE within the series could be externally controlled because the specific compositions in the aqueous droplet make the Pt electrode function like a reference electrode as long as the concentration ratio of Fe(CN)(6)(3-)/Fe(CN)(6)(4-) remains constant. In this way, a conventional three-electrode potentiostat can be used to study the ion transfer process at a liquid \ liquid (L \ L) interface facilitated by an ionophore with variable phase volume ratio (r = V-o/V-w). The effect of r on ion transfer and facilitated ion transfer was studied in detail experimentally. We also demonstrated that as low as 5 x 10(-8) M DB18C6 could be determined using this method due to the effect of the high phase volume ratio.
Resumo:
The membranes of polyvinylidene fluoride, which were synthesized by our laboratory, were used to study the transfer and extraction performances of Nd(III) and Sm(III) with the extraction system of HEH/EHP-kerosene. The results show that the membrane material was suitable to the study on membrane extraction, and could offer a good transfer performance in the membrane construction parameters selected, The extraction reaction in the membrane module was the same as that in liquid-liquid process, HEH/EHP ammoniated for increasing the mass transfer coefficient was almost the same with increasing the concentration of HEH/EHP, and H+ was still transferred first at higher pH range of feed solution when HEH/EHP was ammoniated, The controlling model of the membrane extraction process was the diffusion model accompanied by interfacial reaction, The controlling function of interfacial reaction would increase gradually with the increasing of the membrane pore size. The mass transfer coefficient increased when extraction and stripping were carried out simultaneously.
Resumo:
Results from previous electrochemical studies have indicated that 2,2'-bipyridine and pyrazine do not function as promoters for heterogeneous electron transfer between cytochrome c and metal electrodes. Their lack of activity was attributed to the improper positioning of the two functional groups in 2,2'-bipyridine and the inefficient length of pyrazine. In the present study it was determined that both 2,2'-bipyridine and pyrazine act as promoters when self-absorbed over a sufficiently long dipping time or at roughened electrodes. The promoter characteristics of these two molecules were studied and compared with those of 4,4'-bipyridine. The difference in their promoter behavior appears to result primarily from their different strengths of adsorption and not because electrodes modified with 2,2'-bipyridine or pyrazine are unsuitable for accelerating direct electron transfer reactions in cytochrome c. These results have implications regarding the mechanism(s) of promoter effects in electrochemical reactions of cytochrome c.
Resumo:
Cyanobacteria and red algae have intricate light-harvesting systems comprised of phycobilisomes that are attached to the outer side of the thylakoid membrane. The phycobilisomes absorb light in the wavelength range of 500-650 nm and transfer energy to the chlorophyll for photosynthesis. Phycobilisomes, which biochemically consist of phycobiliproteins and linker polypeptides, are particularly wonderful subjects for the detailed analysis of structure and function due to their spectral properties and their various components affected by growth conditions. The linker potypeptides are believed to mediate both the assembly of phycobiliproteins into the highly ordered arrays in the phycobilisomes and the interactions between the phycobilisomes and the thylakoid membrane. Functionally, they have been reported to improve energy migration by regulating the spectral characteristics of colored phycobiliproteins. In this review, the progress regarding linker polypeptides research, including separation approaches, structures and interactions with phycobiliproteins, as well as their functions in the phycobilisomes, is presented. In addition, some problems with previous work on linkers are also discussed. (c) 2005 Elsevier B.V. All rights reserved.