134 resultados para low-dimensional system


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose an integrated algorithm named low dimensional simplex evolution extension (LDSEE) for expensive global optimization in which only a very limited number of function evaluations is allowed. The new algorithm accelerates an existing global optimization, low dimensional simplex evolution (LDSE), by using radial basis function (RBF) interpolation and tabu search. Different from other expensive global optimization methods, LDSEE integrates the RBF interpolation and tabu search with the LDSE algorithm rather than just calling existing global optimization algorithms as subroutines. As a result, it can keep a good balance between the model approximation and the global search. Meanwhile it is self-contained. It does not rely on other GO algorithms and is very easy to use. Numerical results show that it is a competitive alternative for expensive global optimization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The temperature dependence of hole spin relaxation time in both neutral and n-doped ultrathin InAs monolayers has been investigated. It has been suggested that D'yakonov-Perel (DP) mechanism dominates the spin relaxation process at both low and high temperature regimes. The appearance of a peak in temperature dependent spin relaxation time reveals the important contribution of Coulomb scatterings between carriers to the spin kinetics at low temperature, though electron-phonon scattering becomes dominant at higher temperatures. Increased electron screening effect in the n-doped sample has been suggested to account for the shortened spin relaxation time compared with the undoped one. The results suggest that hole spins are also promising for building solid-state qubits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A metallization scheme of Ni/Ag/Ti/Au has been developed for obtaining high reflective contacts on p-type GaN. In order to find optimal conditions to get a high reflectivity, we studied samples with various Ni thicknesses, annealing temperatures and annealing times. By annealing at 500 degrees C for 5 min in an O-2 ambient, a reflectivity as high as 94% was obtained from Ni/Ag/Ti/Au (1/120/120/50 nm). The effects of Ti layers on the suppression of Ag agglomeration were investigated by using Auger electron spectroscopy (AES). From AES depth profiles, it is clear that Ti acts as a diffusion barrier to prevent Au atoms from diffusing into the Ag layer, which is important in the formation of high reflectivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have systematically investigated the magnetic properties of Si-doped (Ga,Mn)As films. When the Si content is low, both Curie temperature (T-C) and carrier density (p) decrease compared with undoped (Ga,Mn)As, whereas a monotonic increase of T-C and p is observed with further increase in the doping content of Si. We discuss the possible mechanism for the changes obtained by different Si doping contents and attribute the results to a competition between the existence of Si-Ga (Si substitutes for Ga site) that acts as a donor and Si-I (Si interstitials) which is in favor of the improvement of ferromagnetism. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate theoretically CdTe quantum dots containing a single Mn2+ impurity, including the sp-d exchange interaction between carriers and the magnetic ion and the short-range exchange interaction between electron and hole. We find anticrossing behaviors in the energy spectrum of the electron-hole (e-h) pair that arise from the interplay between exchange interactions and the magnetic field. In addition to the s-d exchange interaction, we find that other mechanisms inducing the anticrossings become important in the strong heavy hole-light hole (hh-lh) mixing regime. The transition strengths between the states with spin projection of Mn2+ ion S-z not equal -5/2 (S-z = -5/2) decrease (increase) with increasing magnetic fields due to the alignment of the Mn2+ spin. The spin splitting of the e-h pair states depends sensitively on the external magnetic and electric field, which reveals useful information about the spin orientation and position of the magnetic ion. Meanwhile, the manipulation of the position of the magnetic ion offers us a way to control the spin splitting of the carriers. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mn-including InAs quantum dots (QDs) were fabricated by Mn-ion implantation and subsequent annealing. The optical, compositional, and structural properties of the treated samples were analyzed by photoluminescence (PL) and microscopy. Energy dispersive X-ray (EDX) results indicate that Mn ions diffused from the bulk GaAs into the InAs QDs during annealing, and the diffusion appears to be driven by the strain in the InAs QDs. The temperature dependence of the PL of Mn-including InAs QD samples exhibits QDs PL characteristics. At the same time, the heavy Mn-including InAs QD samples have ferromagnetic properties and high T-c. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have theoretically investigated the energy band structures of two typical magnetic superlattices formed by perpendicular or parallel magnetization ferromagnetic stripes periodically deposited on a two-dimensional electron gas (2DEG), where the magnetic profile in the perpendicular magnetization is of inversion anti-symmetry, but of inversion symmetry in parallel magnetization, respectively. We have shown that the energy bands of perpendicular magnetization display the spin-splitting and transverse wave-vector symmetry, while the energy bands of the parallel magnetization exhibit spin degeneration and transverse wave-vector asymmetry. These distinguishing spin-dependent and transverse wave-vector asymmetry features are essential for future spintronics devices applications. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The confined longitudinal-optical phonon-assisted tunneling through a parabolic quantum well with double barriers in a magnetic field perpendicular to the interfaces is studied theoretically based on a dielectric continuum model. The numerical results show that the applied magnetic field sharpens and heightens the phonon-assisted tunneling peaks in agreement with experimental observation. Furthermore, the phonon-assisted magnetotunneling peaks shift towards the higher biases as the magnetic field increases. In contrast to the results for a rectangular quantum well, the ratio of peak to valley of the phonon-assisted tunneling is larger for the wider well case. It also indicates that the phonon-assisted tunneling current peaks can be easily observed for a wider parabolic quantum well. (C) 2008 Published by Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the effects of accumulated strain by stacking on the surface and optical properties of stacked 1.3 mu m InAs/GaAs quantum dot (QD) structures grown by MOCVD. It is found that the surface of the stacked QD structures becomes more and more undulated with stacking, due to the increased strain in the stacked QD structures with stacking. The photoluminescence intensity from the QD structures first increases as the stacking number increases from 1 to 3 and then dramatically decreases as it further increases, implying a significant increase in the density of crystal defects in the stacked QD structures due to the accumulated strain. Furthermore, we demonstrate that the strain can be reduced by simply introducing annealing steps just after growing the GaAs spacers during the deposition of the stacked QD structures, leading to significant improvement in the surface and optical properties of the structures. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Strongly vertically coupled InAs/GaAs quantum dots (QDs) with modulation doping are investigated, and polarization dependence of two-color absorptions was observed. Analysis of photoluminescence (PL) and absorption spectra shows that s-polarized absorptions at. 10.0 and 13.4 mu m, stem from the first excited state E-1 and the second excited state E-2 in the QDs to the bound state E-InGaAs in the InGaAs spacer, respectively, whereas p-polarized absorptions at 10.0 and 8.2 mu m stem from the first excited state E-1 and the ground E-g in the QDs to the bound state E-InGaAs in the InGaAs spacer, respectively. These measurements illustrate that transitions from excited states are more sensitive to normal incidence, which are very important in designing QD infrared detector. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electron transport through two parallel quantum dots is a kind of solid-state realization of double path interference We demonstrate that the inter-clot Coulomb correlation and quantum coherence would result in strong current fluctuations with a divergent Fano factor at zero frequency. We also provide physical interpretation for this surprising result, which displays its generic feature and allows us to recover this phenomenon in more complicated systems. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By replacing the flat (Ga1-xAlx)As barrier layer with a trapezoidal AlxGa1-xAs barrier layer, a conventional heterostructure can be operated in enhancement mode. The sheet density of two-dimensional electron gas (2DEG) in the structure can be tuned linearly from N-2D = 0.3 x 10(11) cm(-2) to N-2D = 4.3 x 10(11) cm(-2) by changing the bias on the top gate. The present scheme for gated heterostructures is easy to fabricate and does not require the use of self-alignment photolithography or the deposition of insulating layers. In addition, this scheme facilitates the initial electrical contact to 2DEG. Although, the highest electron mobility obtained for the moment is limited by the background doping level of heterostructures, the mobility should be improved substantially in the future. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For the solid-state double-dot interferometer, the phase shifted interference pattern induced by the interplay of inter-dot Coulomb correlation and multiple reflections is analyzed by harmonic decomposition. Unexpected result is uncovered, and is discussed in connection with the which-path detection and electron loss. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on the effective-mass model, the lower energies of the electron and the hole of ZnO/MgxZn1-xO superlattices are calculated. Because of the mismatch of the lattice constant between the ZnO well and the MgxZn1-xO barrier, piezoelectric and spontaneous polarization exist in ZnO/MgxZn1-xO superlattices and a macroscopical internal electric held is found when well width L-w >4 nm and Mg concentration x > 0.2. The parameters of ZnO/MgxZn1-xO superlattices such as lattice constant, band offset, etc. are also proposed. Through calculations, we found the internal electric field can change the lowest energies of the electron and hole to 105.4 and 85.1 meV when well width L-w up to 70 angstrom, which will influence the electronic and optical properties of ZnO/MgxZn1-xO superlattices greatly, while the Rashba effect from the internal electric field is so small that it can be neglected. The ground state exciton energies with different Mg concentration x are also calculated by variational method, our results are very close to the experimental results when Mg concentration x <= 0.3. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the photoluminescence (PL) and structural properties of self-assembled InAs/GaAs quantum dots (QDs) covered by In0.2Al0.8As and In0.2Ga0.8As combination strain-reducing layer (SRL). By introducing a thin InAlAs layer, the ground state emission wavelength redshifts, and the energy splitting between the ground and first-excited states increases to 85 meV at 10 K. The energy splitting further increases to 92 meV and the temperature dependence of full width at half maximum (FWHM) changes for QDs with different SRL after the multi-stacking. These results are attributed to the fact that the combination layer has different effects on QDs compared to the InGaAs SRL.