105 resultados para lipid-peroxidation
Resumo:
The aim of this study was to evaluate the protective effects of different doses and administration modes of N-acetylcysteine (NAC) against X-ray-induced liver damage in mice. Kun-Ming mice were divided into four groups, each composed of six animals: two control groups and two NAC-treated groups. An acute study was carried out to determine alterations in lipid peroxidation (determined by measuring malondiadehyde (MDA) level), glutathione (GSH) content and superoxide dismutase (SOD) activity (assayed by colorimetric method), and DNA damage (characterized by DNA-single strand break using with comet assay) as well as cell apoptosis (measured by flow cytometry) at 12 h after irradiation. The results showed that there were dose-related decreases in MDA level, DNA damage and cell apoptosis, and dose-dependent increases in GSH content and SOD activity in all NAC-treated groups compared to control groups, indicating that pre-treatment or post-treatment with NAC significantly attenuates the acute liver damage caused by X-ray. In addition, significant positive correlations were observed between MDA level and DNA damage or cell apoptosis, implying that lipid peroxidation plays a major role in X-ray-induced liver injury. The data suggest that NAC exerts its radioprotective effect by counteracting accumulated reactive oxygen species in the liver through its properties as a direct antioxidant and a GSH precursor, when administered before or after X-ray irradiation.
Resumo:
The present study was performed to obtain evidence of the radioprotective function of melatonin at different administration levels on carbon ion-induced mouse testicular damage. Outbred Kun-Ming strain mice were divided into six groups, each composed of eight animals: control group, melatonin alone group, irradiation group and three melatonin plus irradiation-treated groups. An acute study was carried out to determine alterations in DNA-single strand break, cell apoptosis, and oxidative stress parameters as well as histopathology in mouse testis 24 h after whole-body irradiation with a single dose of 4 Gy Tie results showed that pre-treatment and post-treatment with high-dose melatonin (10 mg/kg) both significantly alleviated carbon ion-induced acute testicular damage, a greater radioprotective effect being observed in the pre-treatment group. On the other hand, low-dose melatonin (1 mg/kg) had a limited radioprotective effect on irradiation-induced degeneration and DNA lesions in mouse testis. Taken together, the data suggest that prophylactic treatment with a higher dose of melatonin is probably advisable to protect against the effects of heavy-ion irradiation.
Resumo:
根据近年有关文献资料 ,从叶水势、渗透调节、光合作用、干旱诱导蛋白、激素调节、膜抗氧化酶等方面 ,对小麦抗旱性研究在生理生化方面所取得的进展作一综述。目前认为 ,作物抗旱性研究的前沿是从分子水平阐明作物由干旱胁迫引起生理生化变化的本质原因 ,并通过基因工程的手段进行抗旱基因的重组 ,从而创造新的抗旱品种 ,将是一个前景诱人的目标。
Resumo:
Both in-field chemical investigation and in the laboratory toxic tests were carried out to systematically understand the pollution status of cadmium (Cd) and zinc (Zn) in Bohai Bay. Samples collected from surface seawater were determined to describe the distributions of Cd and Zn in Bohai Bay. The average values in our study of Cd and Zn were 0.15 mu g/L and 19.68 mu g/L, respectively. Both of them were lower than the first class limit of seawater quality standard in China. In the laboratory, antioxidant enzymes [SOD (Cu/Zn-SOD, Mn-SOD), CAT], lipid peroxidation (MDA), phase I and phase II enzymes (CYP4501A and GST) were investigated in the bivalves Chlamys farreri exposed to Cd and Zn at the concentration levels of Bohai Bay seawater, which were obtained from our in-field investigation. The reduced SOD, CAT, and EROD (7-ethoxyresorufin-O-deethylase) activities (with the inhibitory rate of 16.8%, 31.5%, and 51.6%, respectively) in Cd treatment were observed and resulted in obvious lipid peroxidation damage. However, treatment of Zn showed elevations in SOD and GST by 13.3% and 29.9%, respectively, and with no influence on lipid peroxidation. In summary, seawater quality in Bohai Bay seawater was ranked as good in general, but it seemed that Cd might possess a potential environmental risk by effecting pro-oxidant/antioxidant balance and phase I detoxification in C. farreri.
Resumo:
Parkinson's disease is a neurodegenerative disorder of uncertain pathogenesis characterized by a loss of dopaminergic neurons in substantia nigra pars compacta, and can be modeled by the neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). Oxidative stress may contribute to MPTP- and Parkinson's disease-related neurodegeneration. Fucoidan is a sulfated polysaccharide extracted from brown seaweeds which possesses a wide variety of biological activities including potent antioxidative effects. Here we investigated the effect of fucoidan treatment on locomoter activities of animals, striatal dopamine and its metabolites and survival of nigral dopaminergic neurons in MPTP-induced animal model of Parkinsonism in C57/BL mice in vivo and on the neuronal damage induced by 1-methyl-4-phenylpyridinium (MPP+) in vitro, and to study the possible mechanisms. When administered prior to MPTP, fucoidan reduced behavioral deficits, increased striatal dopamine and its metabolites levels, reduced cell death, and led to a marked increase in tyrosine hydroxylase expression relative to mice treated with MPTP alone. Furthermore, we found that fucoidan inhibited MPTP-induced lipid peroxidation and reduction of antioxidant enzyme activity. In addition, pre-treatment with fucoidan significantly protected against MPP+-induced damage in MN9D cells. Taken together, these findings suggest that fucoidan has protective effect in MPTP-induced neurotoxicity in this model of Parkinson's disease via its antioxidative activity. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The sulfated galactan fraction F1 isolated from the red seaweed, Porphyra haitanensis, showed typical porphyran structure. It has a linear backbone of alternating 3-linked beta-D-galactosyl units and 4-linked alpha-L-galactosyl 6-sulfate and 3,6-anhydro-alpha-L-galactosyl units. The L-residues are mainly composed of alpha-L-galactosyl 6-sulfate units, and the 3,6-anhydrogalactosyl units are minor. Partial methylation occurred at the C-6 position of the D-galactosyl units and at the C-2 position of the 3,6-anhydro-alpha-L-galactosyl units. Intraperitoneal administration of F1 significantly decreased the lipid peroxidation in aging mice. F1 treatment increased the total antioxidant capacity and the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in aging mice. The results indicated that F1 had significant in vivo antioxidant activity. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Sulfated polysaccharide fraction F2 from Porphyra haitanesis (Rhodephyta) showed inhibitory effect on the in vitro lipid peroxidation. In the present study, the age-related changes in the antioxidant enzyme activity, lipid peroxidation, and total antioxidant capacity (TAOC) in different organs in mice were investigated and the in vivo antioxidant effect of F2 in aging mice was checked. Increased endogenous lipid peroxidation and decreased TAOC were observed in aging mice. Intraperitoneal administration of F2 significantly decreased the lipid peroxidation in a dose-dependent manner. F2 treatment increased TAOC and the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in all the organs tested in aging mice. It is concluded that the sulfated polysaccharide fraction F2 can be used in compensating the decline in TAOC and the activities of antioxidant enzymes and thereby reduces the risks of lipid peroxidation. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
An 8-week growth trial was carried out in a semi-recirculation system at 26 +/- 0.5 degrees C to investigate the optimal dietary carbohydrate-to-lipid (CHO:L) ratio for carnivorous Chinese longsnout catfish (Leiocassis longirostris Gunther). Triplicate tanks of fish were assigned to each of five isocaloric and isonitrogenous diets with different carbohydrate-to-lipid ratios (0.75, 1.48, 1.98, 2.99 and 5.07). The results showed that a higher specific growth rate (SGR) and feed rate (FR) were observed in the fish fed diet ratios of 1.98 CHO:L (P < 0.05). Overloading dietary carbohydrate (5.07 CHO:L ratio) caused skeletal malformations. Apparent digestibility of dry matter (ADC(d)) significantly increased with dietary CHO:L ratio (P < 0.05), while significantly higher apparent digestibility of protein (ADC(p)) and apparent digestibility of energy (ACD(e)) was observed only in the 1.98 CHO:L group (P < 0.05). Whole body contents of dry matter, lipid and energy significantly increased as the CHO:L ratio decreased (P < 0.05). The hepatosomatic index (HSI) was highest at 1.98 CHO:L ratio (P < 0.05). Highest dietary CHO:L ratio resulted in lower liver glycogen, liver lipid, plasma glucose and plasma triacylglycerol (P < 0.05), whereas there was no significant difference in plasma total cholesterol (P > 0.05). High dietary CHO:L ratio caused pathological changes in fish morphology and liver histology. Based on maximum growth, the optimal carbohydrate-to-lipid ratio was 1.98 for Chinese longsnout catfish.
Resumo:
An 8-week growth trial investigated the effect of dietary lipid level on growth performance of a carnivorous fish, Chinese longsnout catfish (Leiocassis longirostris Gunther) and an omnivorous fish, gibel carp (Carassius auratus gibelio). For each species, seven isonitrogenous semi-purified diets (455 g kg(-1) crude protein for Chinese longsnout catfish and 385 g kg(-1) crude protein for gibel carp) were formulated to contain 30, 60, 90, 120, 150, 180 or 210 g kg(-1) lipid. For Chinese longsnout catfish, feed intake (FI) decreased with increasing dietary lipid and there was no significant difference in feed intake from 90 to 210 g kg(-1) lipid. Specific growth rate (SGR) increased with dietary lipid level (P < 0.05) and the 150 and 180 g kg(-1) groups were the best. Feed conversion efficiency (FCE), protein retention efficiency (PRE) and energy retention efficiency (ERE) were higher at 180 g kg(-1) lipid. For gibel carp, FI decreased with increased dietary lipid and 180 and 210 g kg(-1) lipid groups showed lower values. SGR increased with dietary lipid level and the 150 and 180 g kg(-1) were the best. FCE was higher at 180 g kg(-1) lipid level. PRE increased with dietary lipid level and there was no significant difference in groups from 120 to 210 g kg(-1) dietary lipid. ERE increased with increasing dietary lipid level, and groups fed 120, 150 and 180 g kg(-1) lipid showed the highest values. In Chinese longsnout catfish, increase in dietary lipid level, resulted in increased carcass dry matter, crude protein, crude lipid and gross energy. In gibel carp, dry matter, crude protein, and crude lipid increased with dietary lipid level. Based on regression between SGR and dietary lipid, dietary lipid requirements for Chinese longsnout catfish and gibel carp were 142.6 and 140.5 g kg(-1), respectively.
Resumo:
Phosphatidylcholine (PC) and six other PC-similar lipids are coated on interdigital electrodes, IEs, as sensitive membranes. Eight alcohols (C-1-C-4) are tested in a flow system at room temperature. It is found that all responses are log(response)-log(concentration) linear relations. These results agree with Steven's law in psychophysics. Moreover, the thresholds of the sensors are coincident with human olfactory thresholds. The authors have analysed the data of the lipid hypothesis suggested by Kurihara et al. We have found that this hypothesis is also in agreement with Steven's law. Lipid microresistors are real mimicking olfactory sensors. A definition of an olfactory sensor is suggested.
Resumo:
In this paper, an interdigital electrode lipid film odour sensor (ILOS) is designed, fabricated and tested. It is made from a microfabricated chemiresistor coated with a synthetic multibilayer film. Nine odorants in gas phase at room temperature have been detected using the odour sensor. For most of the odorants, the relation between the response of the ILOS and odorant concentration obeys Stevens' power law, and there is a good correlation between the minimum odorant concentrations that give rise to a change of the sensor's conductance and human olfactory thresholds.