62 resultados para increased competition
Resumo:
Data on intergroup-interactions (I-I) were collected in 5 seasonally provisioned groups (A, B, D, D-1, and E) of Tibetan macaques (Macaca Thibetana) at Mt. Emei in three 70-day periods between 1991 April-June (P1), September-November (P2), December-1992 February (P3). The I-I were categorized as forewarning made by high-ranking males (including Branch Shaking and/or Loud Calls), long-distance interactions in space (specified by changes in their foraging movements), and close encounters (with Affinitive Behavior, Male's Herding Female, Sexual Interaction, Severe Conflict, Adult Male-male Conflict, Opportunistic Advance and Retreat, etc. performed by different age-sex classes). From periods Fl to P3, the I-I rate decreased with reduction in population density as a positive correlate of food clumpedness or the number of potential feeders along a pedestrian trail. On the other hand, from the birth season (BS, represented by P1 and P3) to the mating season (MS, represented by P2) the dominance relation between groups, which produced a winner and a loser in the encounters, became obscure; the proportion of close encounters in the I-I increased; the asymmetry (local groups over intruders) of forewarning signals disappeared; the rate of branch shaking decreased; and sometimes intergroup cohesion appeared. Considering that sexual interactions also occurred between the encountering groups, above changes in intergroup behaviors may be explained with a model of the way in which the competition for food (exclusion) and the sexual attractiveness between opposite sexes were in a dynamic equilibrium among the groups, with the former outweighing the latter in the BS, and conversely in the MS. Females made 93% of severe conflicts, which occurred in 18% of close encounters. Groups fissioned in the recent past shared the same home range, and showed the highest hostility to each other by females. In conspicuous contrast with females' great interest in intergroup food/range competition, adult male-male conflicts that were normally without body contact occurred in 66% bf close encounters; high-ranking male herding of females, which is typical in baboons, appeared in 83% of close encounters, and showed no changes with season and sexual weight-dimorphism; peripheral juvenile and subadult males were the main performers of the affinitive behaviors, opportunistic advance and retreat, and guarding at the border. In brief, all males appeared to "sit on the fence" at the border, likely holding out hope of gaining the favor of females both within and outside the group. Thus, females and males attempted to maximize reproductive values in different ways, just as expected by Darwin-Trivers' theory of sexual selection. In addition, group fission was observed in the largest and highest-ranking group for two times (both in the MS) when its size increased to a certain level, and the mother group kept their dominant position in size and rank among the groups that might encounter, suggesting that fission takes a way of discarding the "superfluous part" in order to balance the cost of competition for food and mates within a group, and the benefit of cooperation to access the resources for animals in the mother group. (C) 1997 Wiley-Liss, Inc.
Resumo:
The effect of distance between members of pairs of the Ruddy Shelduck (Tadorna ferruginea) during vigilance behavior was studied during winter at Lijiang Lashihai Lake Reserve, southwest China. The distance between the paired birds while feeding was grouped into three categories: <1 m, 1-3 to and >3 m. Nearly 90% of the distances recorded between paired males and females were within three meters. The degree of vigilance increased with distance apart for females, but not for males. The scanning rate of males was significantly, higher than that of females at <1 m and at 1-3 m respectively, but no significant difference occurred when the distance between them was >3 m. These results are discussed in relation to mate competition and wintering strategy; it is suggested that staving close together is the optimal strategy for members of Ruddy Shelduck pairs.
Resumo:
Silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) were used as a new pen-cultureed biomanipulation technique to control algal blooms in Meiliang Bay of Lake Taihu. In order to evaluate the capacity of these two fishes to decrease algal blooms, diel feeding samplings were carried out in May (without algal blooms) and September (with algal blooms) in 2005. Based on estimated food consumption by the Elliott-Persson model, silver carp increased daily food consumption from 2.07 g dry weight per 100 g wet body weight in May before the outbreak of algal blooms to 4.98 g dry weight per 100 g wet body weight in September during algal blooms outbreak. However, no obvious variation of food consumption was observed in bighead carp during the study period. This species 1.88 and 1.54 g dry weight of plankton per 100 g wet body weight in May and September, respectively. Silver carp had a higher feeding capacity for plankton than bighead carp. Biotic factors (i.e., fish size and conspecific competition with natural species in the lake) may affect the feeding behaviors of both carps as well as seasonal variation of plankton communities in the pen.
Resumo:
In Drosophila, Toll signaling cascade, which resembles the mammalian Toll-like receptor (TLR)/IL-1R signaling pathways and regulates the expression of anti-microbial peptide genes, mainly relies on peptidoglycan recognition proteins (PGRPs) for the detection of bacterial pathogens. To explore the effect of zebrafish peptidoglycan recognition protein 6 (zfPGRP6) on Toll-like receptor signaling pathway, RNA interference (siRNA) and real time quantitative PCR (RQ-PCR) methods were used to identify differentially expressed genes regulated by zfPGRP6. The target genes included TLR2, TLR3, TLR5, TLR7, TLR8, IL1R, Sterile-alpha and Armadillo motif containing protein (SARM), myeloid differentiation factor 88 (MyD88) and nuclear factor (NF)-kappa B2 (p100/p52). The results of RQ-PCR showed that RNAi-mediated Suppression of zfPGRP6 significantly down-regulated the expression of TLR2, TLR5, IL1R, SARM, MyD88 and p100/p52. The expression of beta-defensin-1 was also down-regulated in those embryos silenced by zfPGRP6. In challenge experiments to determine the anti-bacterial response to Gram-negative bacteria, RNAi knock-down of zfPGRP6 markedly increased susceptibility to Flavobacterium columnare. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In previous growth experiments with carnivorous southern catfish (Silurus meridionalis), the non-fecal energy lose was positively related to dietary. carbohydrate level. To test whether metabolic energy expenditure accounts for such energy loss, an experiment was performed with southern catfish juveniles (33.2-71.9 g) to study the effect of dietary carbohydrate level on fasting metabolic rate and specific dynamic action (SDA) at 27.5 degreesC. The fasting metabolic rate in this catfish was increased with dietary carbohydrate level, and the specific dynamic action (SDA) coefficient (energy expended on SDA as percent of assimilated energy) was not affected by dietary carbohydrate level. The results suggest that in southern catfish, carbohydrate overfeeding increases metabolic rate to oxidize unwanted assimilated carbohydrate. A discussion on the poor capacity of intermediate metabolism for adapting dietary carbohydrate in carnivorous fish and its possible relationship with facultative component of SDA was also documented in this paper. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The ZnO films deposited by magnetron sputtering were treated by H/O plasma. It is found that the field emission (FE) characteristics of the ZnO film are considerably improved after H-plasma treatment and slightly deteriorated after O-plasma treatment. The improvement of FE characteristics is attributed to the reduced work function and the increased conductivity of the ZnO H films. Conductive atomic force microscopy was employed to investigate the effect of the plasma treatment on the nanoscale conductivity of ZnO, these findings correlate well with the FE data and facilitate a clearer description of electron emission from the ZnO H films.
Resumo:
Undoped GaN epilayer on c-face (0 0 0 1) sapphire substrate has been grown by metalorganic vapor-phase epitaxy (MOVPE) in a horizontal-type low-pressure two-channel reactor. Photoluminescence (PL) as a function of temperature and excitation intensity have been systematically studied, and the competition between near band gap ultraviolet (UV) and defect-related yellow luminescence (YL) has been extensively investigated, It is revealed that the ratio of the UV-to-YL peak intensities depends strongly on the excitation intensity and the measurement temperature. The obtained results have been analyzed in comparison with the theoretical predications based on a bimolecular model. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
当前大气CO2浓度升高是全球变化的主要趋势之一,CO2浓度升高还会引起全球变暖等其它环境问题,因而CO2浓度浓度升高对植物影响的研究已经成为全球变化领域的焦点。红桦是川西亚高山地区暗针叶林演替初期的先锋树种和演替后期的建群种,在群落演替过程中它对环境因子的响应决定红桦群落的演替进程。本文通过控制CO2浓度的气候室试验,研究了CO2浓度倍增环境下,不同密度水平红桦碳氮固定、分配可能发生的改变,并探讨了升高大气CO2浓度对群体内部竞争的影响。以期通过本研究明确川西亚高山地区代表性物种红桦对未来气候变化的响应,为今后采取措施应对气候变化、妥善进行森林管理提供理论依据和科学指导。主要研究结果如下: 1.升高CO2浓度对红桦幼苗生长的影响以及树皮、树干响应的不同 (1) CO2浓度升高显著促进红桦幼苗的生物量、株高、基茎的生长,同时也改变生物量在体内的分配格局,主要是增加根和主茎、减少叶在总生物量中的比重。(2)树皮和树干对升高CO2浓度的影响有差异,它们对CO2浓度升高的反应程度不同,但反应方向一致。 2.密度的副效应 (1) 增加种植密度对单株生物量、株高和基径的生长具有副效应,也降低升高CO2浓度对红桦生长的正效应。(2) 增加种植密度,显著增加红桦幼苗的群体生物量,从而使红桦群体固定更多的大气CO2气体。可见密度在决定红桦生物量及固碳能力方面具有重要意义。探索适合未来大气CO2浓度升高条件下植物生长的密度,对未来的森林经济生产、生态恢复具有重要意义。 3. 升高CO2浓度对红桦幼苗苗冠结构及冠层内部竞争的影响 (1) 冠幅、冠高、苗冠表面积和苗冠体积等树冠特征均受CO2浓度升高的影响而增加,但是受密度增加的影响而降低。(2) 单位苗冠投影面积叶片数(LDcpa)和单位苗冠体积叶片数(LDcv)均低于相应的现行CO2浓度处理,这主要是由于冠幅和冠高的快速生长所造成的。(3) LDcpa和LDcv的降低表明,红桦在升高CO2浓度的条件下,会作出积极的响应,从而缓解由于群体和个体生长的增加所引起的竞争压力的增加。 4. 升高CO2浓度对红桦幼苗养分元素吸收与分配的影响 (1) CO2浓度升高,植株各器官N、P含量降低,但单株N、P总吸收量均增加。红桦幼苗体内N、P浓度的下降是由于生物量迅速增加引起的稀释效应造成的。(2) CO2浓度升高,N、P向主茎和根的分配增加,向叶片的分配减少,主要是由于前者在总生物量中的比重增加,而后者减少了。(3) CO2浓度升高,氮磷利用效率(NUE和PUE)提高,氮磷累积速率(NAcR和PAcR)显著增加。而NUE和PUE的提高可以有效缓解CO2浓度升高后,亚高山和高山地区森林土壤中养分元素不足对森林生产力的限制。 5. 升高CO2浓度对红桦幼苗群体碳平衡的影响 (1) 升高CO2浓度对植物的光合作用、呼吸速率和生长均具有促进作用。(2) 土壤有机碳含量在实验前期迅速增加,后期积累速率下降。(3) 升高CO2浓度以后,土壤呼吸显著增强;土壤呼吸还具有明显的季节变化。(4) 红桦群体日固碳量受到升高CO2浓度的促进作用。结果(1)-(4)说明所研究群落的碳动态对现行的气候波动是敏感的;所研究群落在作为大气CO2气体的源-汇关系方面至少存在季节间的源汇飘移。(5)种植密度的升高显著增加了群体固碳量。 6. 升高CO2浓度对红桦幼苗生长后期叶片衰老的影响 升高CO2浓度有利于减缓红桦幼苗叶片生长季节末期的衰老。生长季节末期,随着CO2浓度的升高光合速率和可溶性蛋白含量均呈上升趋势,同时MDA(丙二醛)含量下降,保护酶SOD(超氧化物岐化酶)、CAT(过氧化氢酶)活性升高。由此说明,升高CO2浓度有利于减缓生长季节后期叶片的衰老,使叶片维持较高的光合速率,也从生理学的角度支持了本文及前人有关CO2浓度升高促进植物光合和生长的假说及结果。 The increased CO2 concentration is one of the most important problems among global changes. The increase of CO2 will also cause other environmental problems, such as global warming, etc. So the effects of elevated CO2 on plant have drawn sights of many scientists in the research field of global change. Red birch (Betula albosinensis) usually emerges as the pioneer species in initial stage and as constructive species in later stages of forest community succession of the dark coniferous forests in Western Sichuan, China. It’s response to elevated CO2 may determine the succession process of the community where it lives in. By controlling CO2 at the ambient and twice as the ambient level (ambient + 350 umol mol-1) using enclosed-top chambers (ETC), possible effects of elevated CO2 on carbon fixation and allocation under two plantation densities are investigated. The effects of elevated CO2 on competition within canopy of red birch seedlings are also observed in the present paper. We hope to make sure of the effects of elevated CO2 on the representative species, red birch. And so that, our results could provide a strong theoretical evidence and scientific direction for forest management and afforestation under a future, CO2 elevated world. The results are as fowllows: 1. The effects of elevated CO2 on growth and the different responses of wood and bark of red birch seedlings (1) Elevated CO2 increases the growth of seedling biomass, seedling height and basal diameter of red birch. It also changed the biomass allocation in red birch seedlings. The ratio of root and main stem to all biomass is increased and the ratio of leaf is decreased. (2) Tree bark and wood show different response degree but similar response direction to elevated CO2. 2. Negative effects of planting density (1) The increase of planting density showes negative effects on the individual growth of seedling biomass, seedling height and basal diameter of red birch. It also eliminates the positive effects of elevated CO2 on growth of red birch seedlings. (2) Community biomass is increased by the elevated planting density, which means that the high density red birch community could fix more CO2 than the low density one. These results show that planting density plays an important role in determining biomass and carbon fixation ability of red birch community. Thus, exploring proper planting density becomes economically important for the future, CO2 elevated word. 3. The effects of elevated CO2 on crown architecture and competition within canopy of red birch seedlings (1) Crown width, crown depth, crown surface area and crown volume are all increased under the influence of elevated CO2. (2) Leaf number per unit area of projected crown area (LDcpa) and per unit volume of crown volume (LDcv) are lower under elevated CO2. This is resulted from the stimulated growth of tree crown features. (3) The decrease of LDcpa and LDcv indicate that plants will respond forwardly to reduce the possible increase of competition resulted from stimulated growth of individual plant and collectives in conditions of elevated CO2. 4. The effects of elevated CO2 on nutrition accumulation and allocation of red birch seedlings (1) Contents of N and P decrease due to the prompt increase of biomass of plant organs caused by elevated CO2. However, their accumulations increase under elevated CO2. (2) Elevated CO2 increases the allocation of N, P to main stem but reduced its allocation to leaf for that dry weight of the former increased but the dry weight of the later decreased. (3) Using efficiencies of N, P (NUE and PUE) and their accumulation rates (NAcR and PAcR) are found to increase under elevated CO2. Soil nutrition contents are always the limiting factors for plant growth at subalpine and alpine region. The increased NUE and PUE are helpful to eliminate the nutrition limitation in this area in the future world, when CO2 concentration doubles the ambient. 5. The effects of elevated CO2 on carbon balance of red birch communities (1) Net photosynthetic rates (Pn), dark respiration rates (Rd) and growth are all stimulated by elevated CO2. (2) Content soil organic carbon increases sharply at the primary stage of experiments and then the increasing rates decrease to a low level at later stages. (3) Soil respiration rates increase significantly with the elevation of CO2 concentration. (4) The daily carbon fixations of whole community are heightened by elevated CO2. The results (1)-(4) suggest that, the community being studied are sensitive to current climate change; the studied community, as a sink of atmospheric CO2, is pool-sink alternative between seasons. (5) The carbon fixations are increased along the increase of planting densities. 6. The effects of elevated CO2 on physiological features of leaf senescences of red birch seedlings at the later stage of growing season Elevated CO2 helps to postpone the leaf senescences of red birch at the end of the growth season. CO2 enrichment increases the photosynthetic rates, contents of soluble proteins and photosynthetic pigments. And meanwhile contents of malondialdehyde (MDA) decreases and activities of superoxide dismutase (SOD) and catalase (CAT) are both increased. These results suggest that the senescences of red birch leaves are delayed by elevated CO2, which keep the photosynthetic rates at relatively high levels. Our results lend supports to hypothesis and results on stimulated photosynthetic rates and growth from both other researchers and the present paper.
Resumo:
岷江上游干旱河谷区水土流失强烈,地质灾害频繁,生态环境十分脆弱,而土壤条件恶劣(水分不足和养分缺乏)是阻碍该区植被恢复的关键因子,因此研究水分和乡土灌木生长对土壤的影响对该区的生态恢复具有指导意义。本文通过定点模拟实验,选取三种优势豆科灌木为研究对象,分别是白刺花(Sophora davidii)、小马鞍羊蹄甲(Bauhinia faberi var. microphylla)和小雀花(Campylotropics polyantha),设置5 个水分梯度,分别为100%、80%、60%、40%和20%田间持水量(FC),对栽种植物与不种植物下土壤理化性质和酶活性进行测定分析,系统比较和研究了不同水分条件和不同乡土灌木生长对干旱河谷区土壤结构、养分循环、酶活性以及微生物量的影响。主要结果如下:1. 无论生长植物与否,土壤的毛管持水量和毛管孔隙度都随着水分含量的减少而降低,最大持水量、总孔隙度和容重变化不大,相应地,土壤中的非毛管孔隙随含水量的减少而升高。各水分条件下,种植植物的毛管持水量和毛管孔隙度低于无植物生长的土壤,非毛管孔隙度相应地高于无植物土壤。土壤含水量在100%-40% FC 时,三种豆科灌木的毛管持水量和毛管孔隙度存在差异,而20% FC 条件下,三种豆科灌木土壤的物理性质基本相同。2. 水分胁迫影响土壤中养分的矿化和积累,主要表现在降低了水溶性碳和铵态氮的含量,中等程度胁迫时(60% FC)促进了有机碳和硝态氮的富集,对速效钾和有效磷没有明显作用。种植豆科灌木后各水分梯度上都增加了有机碳、铵态氮、速效钾和有效磷的积累。增加程度上三种豆科灌木间有一定差异,对于土壤有机碳总量,种植白刺花和小马鞍羊蹄甲明显高于小雀花,同样的情况还出现在铵态氮和速效钾上,但是对于有效磷,种植小雀花后的增加程度则明显高于白刺花和小马鞍羊蹄甲。种植豆科灌木不仅增加了土壤养分的相对含量,也改变了其在水分梯度上的变化趋势及其变化幅度,这种作用主要体现在碳元素和氮元素上。3. 无植物生长时脲酶活性随水分含量的减少而升高,水分胁迫对磷酸酶和过氧化氢酶的作用不显著,蔗糖酶也保持在相对较高的水平。种植植物后,蔗糖酶、磷酸酶活性与无植物时相比有较大幅度的提高,种植白刺花的脲酶活性也升高,其升高的程度在不同水分含量时不同。种植植物还降低了酶活性在水分梯度上的变幅,使之在水分梯度间的差异显著性降低。脲酶活性在指示土壤性质改变方面是较敏感的指标,其它三种酶在不同植物间的差异不明显。4. 在无植物生长时,中等程度的水分胁迫(60% FC)提高了土壤微生物量碳含量,过高或过低的土壤水分均不利于微生物碳的积累。种植小马鞍羊蹄甲后微生物量碳在水分梯度上的变化趋势与无植物生长时一致,而种植白刺花和小雀花后微生物量碳随着水分含量的减少而降低。不同种类植物的微生物量碳在水分梯度上的变化特征也不同,100% FC 条件下三种植物间没有差异,80%和60% FC 条件下小马鞍羊蹄甲显著高于白刺花和小雀花,40%和20% FC 条件下白刺花和小马鞍羊蹄甲也显著高于小雀花,说明不同种类植物随着干旱胁迫程度的加深微生物量碳的降低幅度不同,在极度干旱时,白刺花和小马鞍羊蹄甲土壤依然保持了较高的微生物活性,而小雀花土壤微生物量则明显下降。The dry valley of the upper reaches of the Minjiang River is seriously degradedmountain ecosystem. It was endangered by extremely soil lost and frequentlygeological disaster. Previous studies showed that short of water and nutrients in soilwas the principal limiting factors of vegetation restoration in this area. The typical soiland three dominant leguminous shrubs Sophora davidii, Bauhinia faberi var.microphylla and Campylotropics polyantha in upper reaches of arid Minjiang Rivervalley were considered as experimental material. Two-month old seedlings of eachspecies were exposed to five water supplies (100%, 80%, 60%, 40% and 20% waterfield capacity (FC)) in a temperature and light-controlled greenhouse. Afterthree-month water treatment, soil physiochemical variables and soil microbialactivities were determined by conventional methods. The main results showed that:1. Soil capillary capacity and capillary porosity decreased along water supplyregimes in all treatments, while saturated water capacity, total porosity and bulkdensity kept in a relatively stable level, as a result, the non-capillary porosity andcapacity increased with decrease of water supply. Compared to non-planted soil, theplant-soil systems had a higher non-capillary porosity and capacity, suggestingappropriate oxygen was present in soil to maintain the living of microorganism. Soilof three type shrub species shared the same capillary capacity and capillary porosityunder 20% FC.2. Water soluble carbon and NH4+-N decreased in response to water stress, whiletotal organic carbon and NO3--N promoted by moderate water stress and inhibited by 100% and 20% FC. Total organic carbon, NH4+-N, rapidly available K and availableP increased after the planting of leguminous shrubs in five water supply regimescompared to non-planted soil. For TOC, NH4+-N and rapidly available K, thepromotion effect was higher in S. davidii and B. faberi var. microphylla than C.polyantha planted soil, while available P displayed the opposite side. The planting ofshrubs also reduced the variance of observed traits along water supply gradients.3. Drought stress increased urease activity in non-planted soil, while insignificantdifferences were observed in phosphatase and catalase activity among five watersupply regimes. The planting of leguminous shrubs facilitated the β-glucosidase andphosphatase activity compared to the non-planted soil. It also reduced the variance ofenzyme activity along water supply gradients. Urease was more sensitive to waterstress than other three enzymes.4. Soil water content significantly affected microbial biomass carbon andCmic:Corg. S. davidii and B. faberi var. microphylla showed more drought toleranceability than C. polyantha, attributing not only to their relatively smaller variance ofmicrobial biomass carbon along soil water supply gradients, but also to the highlevel of microbial activity under severe water stress. S. davidii and B. faberi var.microphylla benefited reproduction of soil microorganism at 60%-80% FC, whilesevere drought limited it due to the competition of water and nutrients between plantand soil microorganism.
Resumo:
从空间、时间、食物3个方面研究了若尔盖湿地3种两栖类的种间竞争,运用生态位理论探讨了3种两栖类利用环境资源的能力以及它们之间的共存模式,研究了3种两栖类年周期食性,并考察了畜牧业对3种两栖类食性及食物竞争格局的影响;此外,还通过实验室研究对2种两栖类幼体的种间竞争策略进行了考察。主要结果如下: 1、两栖类的空间资源利用状况:在3种两栖类成体生态位宽度的比较中,岷山蟾蜍(Bufo minshanicus)成体在牧场性质(0.41)、牛粪数量(0.42)、植被盖度(0.20)、地表温度(0.50)、地表湿度(0.51) 5个维度上的生态位宽度最窄;而倭蛙(Nanorana pleskei)成体在牛粪数量(0.81)、植被高度(0.63)、植被盖度(0.47)、小水体距离(0.68) 4个维度上的生态位宽度最宽。在3种两栖类亚成体生态位宽度的比较中,岷山蟾蜍亚成体在牧场性质(0.66)、牛粪数量(0.58)、植被高度(0.64)、小水体距离(0.51)、地表湿度(0.79) 5个维度的上生态位宽度最宽;倭蛙亚成体在牧场性质(0.39)、牛粪数量(0.30)、地表温度(0.18)、地表湿度(0.33) 4个维度上的生态位宽度最窄。高原林蛙(Rana kukunoris)在地表温度(成体:0.62;亚成体:0.56)、地表湿度(成体:0.84;亚成体:0.60)两个维度上具有较大的生态位宽度值,而在小水体距离维度上(成体:0.27;亚成体:0.14)的生态位宽度值则很小。比较3种无尾两栖类在不同生长阶段(成体、亚成体)的生态位宽度,发现高原林蛙和倭蛙的亚成体对栖息环境的要求更高。3种两栖类空间资源利用的相似程度很高,高原林蛙与倭蛙之间的生态重叠度(0.87)较之它与岷山蟾蜍(0.81)的生态位重叠度更大。 2、两栖类的日活动节律:高原林蛙成体、亚成体、岷山蟾蜍亚成体活动的最低气温为0℃、2℃、8℃;岷山蟾蜍和高原林蛙亚成体出现的数量与气温成极显著的正相关(r=0.797, p<0.001;r=0.794, p<0.001),高原林蛙成体出现的数量与气温有一定相关性(r=0.456, p<0.05);晴天时两栖类的活动性明显高于阴天(p<0.001);多云转晴天气,高原林蛙和岷山蟾蜍亚成体出现两次日活动高峰,分别为中午12:30左右和下午15:30~16:30之间;多云天气,高原林蛙和岷山蟾蜍亚成体出现两次日活动高峰,分别为9:30~10:30之间和15:30~16:30之间。 3、两栖类的食物资源利用状况:春、秋两季,高原林蛙最主要的食物是蜉金龟科(Aphodiidae)昆虫,相对重要性指数(IRI)最高(春季:35.28%,秋季:28.57%),其次为昆虫的幼虫,以及双翅目的毛蚊科(Bibionidae)、蝇科(Muscidae)、丽蝇科(Calliphoridae)昆虫,秋季,蝗虫是高原林蛙食物组成中的重要部分;岷山蟾蜍最主要的食物是蚂蚁(IRI,春季:85.54%,秋季:49.70%),其次为蜉金龟科、象甲科(Curculionidae)、步甲科(Carabidae)、粪金龟科(Geotrupidae) 等鞘翅目昆虫;倭蛙春季的最主要食物也是蜉金龟科昆虫(IRI,春季:13.41%),其次为蚂蚁、毛蚊科昆虫、昆虫的幼虫以及狼蛛科(Lycosidae)。3种两栖类中,倭蛙的食性生态位宽度相对较宽(0.43),而岷山蟾蜍(0.09)和高原林蛙(0.22)的生态位宽度较窄,与春季相比,两栖类在秋季的食谱更宽。以利用食物种类为标准,春季高原林蛙与倭蛙的生态位重叠度(0.40)比它与岷山蟾蜍的生态位重叠度(0.33)更大。 4、畜牧业对两栖类食性及食物竞争格局的影响:以藏牦牛粪为食物或寄居场所的昆虫,如蜉金龟科、粪金龟科、毛蚊科、蝇科、丽蝇科昆虫和某些昆虫幼虫,是3种两栖类食物谱中最主要的组成部分,蜉金龟科昆虫在高原林蛙食谱中的比例更高,高原林蛙可能从畜牧业发展中获得更多的好处,使之在食物竞争方面处于优势地位。与无放牧样地相比,在有放牧样地的中,两栖类食谱中的蜉金龟科昆虫数量更多(有放牧:31.94%;无放牧:21.32%)、出现频率更高(有放牧:76.38%;无放牧:44%)。然而在不同样地上(有放牧/无放牧),两栖类的食物组成无显著性差异(P=0.188),两栖类的数量(P=0.075)、肥满度(P=0.537)均没有显著差别。 5、两栖类幼体的竞争策略:实验室条件下,通过活动性水平,变态时的体重、增长率和完成变态所需时间考察自然条件下常同水塘分布的中华蟾蜍(Bufo gargarizans)和高原林蛙蝌蚪的竞争策略。结果表明:中华蟾蜍蝌蚪在不同食物资源条件下,所选择的生存策略可能不同,即食物资源充足时,增加活动性获取更多食物,食物资源有限时,降低活动性且提前完成变态;与中华蟾蜍蝌蚪相比,在食物资源有限时高原林蛙蝌蚪获取食物能力可能更强。 This paper presented the study of competition of three amphibians (Rana kukunoris, Nanorana pleskei, Bufo minshanicus) based on spatial, temporal and dietary scales in Zoige wetland. We measured coexistence patterns of three amphibians and analyzed their ability of exploiting resource. Effects of grazing on the diet composition and diet competition of amphibians were analyzed by their diet composition during spring and autumn. Furthermore, we examined the competitive ability of larval common frogs (Rana kukunoris)and common toads(Bufo gargarizans) in a laboratory experiment, and analyzed their competitive strategies respectively. The results were as follows: 1 .The status of using spatial resource Niche breadths of B. minshanicus adults on 5 dimensional axes including character of pasture(0.41), number of yaks dung(0.42), vegetation coverage(0.20), temperature (0.50)and humidity(0.51) of ground surface were narrower than adults of R. kukunoris and N. pleskei. Niche breadths of B. minshanicus subadults were broader than R.kukunoris subadults and N.pleskei subadults on 5 dimensional axes including character of pasture (0.66), number of yaks dung (0.58), vegetation height (0.64), distance to small waterbodies (0.51), humidity of ground surface (0.79). Niche breadths of N. pleskei subadults were the narrowest in three anurans subadults on 4 dimensional axes including character of pasture (0.39), number of yaks dung (0.30), temperature (0.18) and humidity (0.33) of ground surface, niche breadths of N. pleskei adults were the broadest in three anurans adults on 4 dimensional axes including number of yaks dung (0.81), vegetation height (0.63) and coverage(0.47), distance to small waterbodies(0.68).Comparatively, niche breadths of R. kukunoris were broader on the two microclimate factors including temperature(adults:0.62;subadults:0.56) and humidity (adults:0.84;subadults:0.60)of ground surface, but was narrow on distance to small waterbodies(adults:0.27;subadults:0.14). Strategies for using habitat resource of adults and subadults of the three species anuran were different. Generally, subadults of R. kukunoris and N. pleskei needs better habitat condition. It was quite similar that three anurans exploited spatial resource, Niche overlap between R. kukunoris and N. pleskei (0.87) was greater than that between R. kukunoris and B.minshanicus(0.81). 2.Daily activity rhythm R. kukunoris audlts were active when air temperatures were as low as 0℃, R. kukunoris subadults were active at 2℃, B.minshanicus subaudlts were active at 8℃. Positive correlation was found between activities of amphibians and air temperature, Subadults of R.kukunoris, (r=0.797, p<0.001), Subadults,of,B.minshanicus, (r=0.794, p<0.001), andbadults,of,R.kukunoris(r=0.456, p<0.05).Amphibians were more active during sunny days than cloudy days. In cloudy turning into sunny, R. kukunoris and B.minshanicus subadults had two active peak: at noon about 12:30 and 15:30~16:30 pm; in cloudy, R. kukunoris and B.minshanicus subadult had two active peak too : 9:30~10:30am,15:30~16:30pm. 3.Diet analysis Aphodiidae was the most commonly consumed food item by R. kukunoris based on index of relative importance (IRI) during spring (35.28%) and autumn (28.57%) in Zogie wetland. Besides Aphodiidae, larval insect, dipterans such as Bibionidae, Muscidae, Calliphoridae also were important food item for R. kukunoris, in autumn, locust was one of important food item for R. kukunoris. The most important food item for B.minshanicus during spring (IRI:85.54%) and autumn (IRI:49.70%) was ants, following, was coleopterans, such as Aphodiidae, dung beetle. Aphodiidae (IRI:13.41%) were the most important consumed food item by N. pleskei during spring too, following, was ants and Bibionidae. Dietary breadth of N. pleskei (0.43) were greater than R. kukunoris (0.22) and B. minshanicus (0.09). As a whole, Dietary breadth of amphibians during aurumn were greater than spring. Based on prey item, dietary overlap between R. kukunoris and N. pleskei (0.40) was greater than that between R. kukunoris and B.minshanicus (0.33) during spring. 4.Effects of grazing on the diet composition and diet competition of amphibians Amphibians are an important part of the pasture ecosystems as prey and predator. In Zogie wetland, major diet of amphibians was closely associated with dung of yaks, for example, Aphodiidae, Bibionidae, Muscidae, dung beetle. Dung of yaks was major diet and habitat of these insects. Proportion of Aphodiidae was higher in diet composition of R. kukunoris than N. pleskei and B.minshanicus, with development of pasturage, R. kukunoris may have a diet competitive advantage over N. pleskei and B.minshanicus. Number of Aphodiidae in diet composition of amphibians was higher in samples with grazing (31.94%) than in those without grazing (21.32%). Occurrence Frequency of Aphodiidae in diet composition of amphibians was higher in samples with grazing (76.38%) than in those without grazing (44%). However, There was not significantly different on diet composition (P=0.188), and number (P=0.075) and the relative fatness (P=0.537) of amphibians between grazing samples and without grazing. 5.Competitive strategies of amphibian larvae I examined the competitive ability of larval toads (Bufo gargarizans) and frogs (Rana kukunoris) which co-occur in the nature pond by activity level, the growth rate and mass at metamorphosis and larval period in a laboratory experiment. The results suggest: In laborary, B.gargarizans adapted himself to different food level by changing activity. At high food level, B. gargarizans increased activity to gain more diet. At low food level, B. gargarizans decreased activity and achieved early metamorphosis. When food resource was limit, R. kukunoris could gain more food than B. gargarizans.
Resumo:
自养硝化过程在自然界氮素循环和污水处理系统脱氮过程中起着关键作用。因此,了解有机碳对硝化的影响和硝化菌与异养菌之间的竞争对微生物生态学和污水处理系统设计都很重要。目前对氨氧化到硝酸盐氮过程的研究文献很多,但对亚硝酸盐氧化过程在异养菌的存在下如何受到有机碳影响的研究甚少。本文从生理生化指标、基因组学、蛋白组学三方面考察了在实验室条件下有机碳(乙酸钠)对硝化细菌和异养菌组成的混合菌群的硝化性能、菌群结构及代谢功能的变化的影响。 全文分为两大部分: 第一部分为乙酸钠对游离态硝化混合菌群的硝化性能和菌群结构的短期影响。混合菌株先在自养条件下进行连续培养,两个月后硝化速率达到20 mg N/(L·d);而后离心收集菌体进行批式实验。在批式反应器中,初始亚硝氮均为126mg N/ L,乙酸钠-C 与亚硝酸盐-N 的比分别为0,0.44,0.88,4.41,8.82。结果表明:在低C/N 比(0.44 和0.88)时,亚硝酸盐去除速率比C/N=0 下高,细菌呈现一次生长;而在高C/N 比(4.41 和8.82)时,出现连续的硝化反硝化,亚硝酸盐去除率仍比对照下高,细菌呈现二次生长。不同C/N 比下微生物群落明显不同,优势菌群从自养和寡营养细菌体系(包括亚硝酸盐氧化菌,拟杆菌门,α-变形菌纲,浮霉菌门和绿色非硫细菌下的一些菌株)过渡到异养和反硝化菌体系 (γ-变形菌纲的菌株尤其是反硝化菌Pseudomonas stutzeri 和P. nitroreducens 占主导)。 第二部分为乙酸钠对硝化混合菌群生物膜的硝化性能和菌群结构的长期影响。接种富集的硝化混合菌群于装有组合式填料的三角瓶中,于摇床中自养培养;两个月后填料上形成生物膜的硝化速率达到20 mg N/ (L·d);而后进行长期实验,每12 小时更换混合营养培养基(亚硝氮约200 mg N/ L,C/N 比同上)。结果显示:相较于C/N 比=0 时的亚硝酸盐氧化反应来说,低C/N 比出现了部分的反硝化,而高C/N 比则是几乎完全的反硝化。与对照比,C/N=0.44 时亚硝酸盐氧化速率并未受乙酸钠的影响,反而上升了,但C/N=0.88 时亚硝酸盐氧化速率有所下降。菌群结构分析表明自养对照与混合营养下微生物群落的不同;PCR-DGGE未检测出混合营养下硝化杆菌的存在,而显示异养菌尤其是反硝化菌的大量存 在。荧光定量PCR 结果表明随C/N 比上升,硝化杆菌数量从2.42 × 104 下降到1.34× 103 16S rRNA gene copies/ ng DNA,反硝化菌由0 增加至2.51 × 104 nosZgene copies/ ng DNA。SDS-PAGE 的结果表明不同C/N 比下的蛋白组较为复杂且呈现一定的差异性。 有机碳对亚硝氮氧化及微生物群落的影响很复杂,本文分别讨论了对游离态和生物膜固定态两种状态的混合菌群相应的短期和长期影响研究。研究发现,有机碳并非一定带来硝化的负影响,如果控制在适当的C/N 比范围,有机碳是有利于亚硝氮氧化的。这些发现阐明了有机碳和硝化反硝化的关系,填补了硝化微生物生态学上的空白,对污水处理系统中减少异养菌的影响并提高氮去除率有一定理论指导意义。 Nitrification plays a key role in the biological removal of nitrogen in both nature and wastewater treatment plant (WWTP). So, understanding of the effect of organic carbon on nitrification and the competition between nitrifying bacteria and heterotrophic bacteria is important for both microbial ecology and WWTP design and operation. Despite the fact that the nitrification process of ammonia to nitrate has been extensively investigated, it is not known how the process of nitrite oxidization is affected by organic carbon when heterotrophic bacteria are present. By measuring different physiological and biochemical parameters, as well as using genomic DNA and proteome analysis, we investigated the influence of organic (acetate) on nitrite oxidizing performance, community structure and metabolic function of nitrite-oxidizing and heterotrophic bacteria under laboratory conditions. The dissertation involves two parts: Part one deals with the effect of organic matter on functional performance and bacterial community shift of nitrite-oxidizing and heterotrophic bacteria under suspended state. The bacteria were prepared in a continuous-flow stirred reactor under autotrophic condition; after two months, the nitrification rate of the culture reached about 20 mg N/ (L·d); then the bacteria were harvested for the next batch experiments. The initial concentrations of nitrite were 126 ± 6 mg N/ L in all flasks, and sodium acetate (C) to nitrite (N) ratios were 0, 0.44, 0.88, 4.41, and 8.82, respectively. The results showed that at low C/N ratios (0.44 or 0.88), the nitrite removal rate was higher than that obtained under autotrophic condition and the bacteria had single growth phase, while at high C/N ratios (4.41 or 8.82), continuous aerobic nitrification and denitrification occurred besides higher nitrite removal rates, and the bacteria had double growth phases. The community structure of total bacteria strikingly varied with the different C/N ratios; the dominant populations shifted from autotrophic and oligotrophic bacteria (NOB, and some strains of Bacteroidetes, Alphaproteobacteria, Actinobacteria, and green nonsulfur bacteria) to heterotrophic and denitrifying bacteria (strains of Gammaproteobacteria, especially Pseudomonas stutzeri and P. nitroreducens). Part two describes the influence of acetate on nitrite oxidizing performance, community structure and metabolic function of nitrite-oxidizing and heterotrophic bacteria in biofilms. Bacterial enrichments was transferred into flasks with polypropylene carriers and cultured under agitated and autotrophic condition. After two month, the biofilms grown on the carriers had a nitrification rate of about 20 mg N/ (L·h); then the biofilms were refreshed with mixotrophic medium (nitrite were 200 mg N/ L in all flasks, and C/N ratios was the same as above) every 12 h. the results show: normal nitrite oxidization reactions were performed when C/N = 0, but nitrite oxidization and partial denitrification occurred with low C/N ratios (0.44 or 0.88). At high C/N ratios (4.41 or 8.82), we mainly observed denitrification. In contrast to C/N = 0, the nitrite oxidization rate was unaffected when C/N = 0.44, but decreased with C/N = 0.88. The structure of bacterial communities varied significantly between autotrophic and mixotrophic conditions. Nitrobacter was hard to detect by PCR-DGGE while heterotrophs and especially denitrifiers were in the majority under mixotrophic conditions. Real-time PCR indicated that the Nitrobacter population decreased from 2.42 × 104 to 1.34 × 103 16S rRNA gene copies/ ng DNA, while the quantity of denitrifiers obviously increased from 0 to 2.51×104 nosZ gene copies/ ng DNA with an increasing C/N ratio. SDS-PAGE indicated the complexity of and a certain difference between the proteome of nitrite-oxidizing and heterotrophic bacteria at different C/N ratios. We conclude that the influence of organic matter on nitrite oxidation and the community structure of NOB and heterotrophic bacteria is complex. In this dissertation, we focused on how sodium acetate influenced the system both under suspended state and in biofilms. We observed that acetate did not necessarily have a negative impact on nitrification. Instead, an appropriate amount of acetate benefited both nitrite oxidization and denitrification. These findings provide a greater understanding about the relationship between organics and nitrification; they fill the gaps in the field of microbial ecology of nitrifying bacteria; they also provide insight into how to minimize the negative impact of heterotrophic bacteria and maximize the benefit of nitrogen removal in biological treatment systems.
Resumo:
The study of rotation-alignment of quasiparticles probes sensitively the properties of high-j intruder orbits. The distribution of very-high-j orbits, which are consequences of the fundamental spin-orbit interaction, links with the important question of single-particle levels in superheavy nuclei. With the deformed single-particle states generated by the standard Nilsson potential, we perform Projected Shell Model calculations for transfermium nuclei where detailed spectroscopy experiments are currently possible. Specifically, we study the systematical behavior of rotation-alignment and associated band-crossing phenomenon in Cf, Fm, and No isotopes. Neutrons and protons from the high-j orbits are found to compete strongly in rotation-alignment, which gives rise to testable effects. Observation of these effects will provide direct information on the single-particle states in the heaviest nuclear mass region.