74 resultados para hybrid material


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A hybrid material with a conductive organic network in an inorganic matrix has been prepared by in-situ hydrolysis/polycondensation of TEOS in an aqueous solution of a solubilized polyaniline. Due to intense hydrogen bonding (indicated by Si-29 NMR and FTIR) the conductive polymer is very well dispersed in the silica matrix. The Figure shows SEM images of a 46/54 wt.-% hybrid at two temperatures (left 20 degreesC, right 100 degreesC).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel inorganic-organic hybrid material incorporating graphite powder and Keggin-type alpha -germanomolybdic acid (GeMo12) in methyltrimethoxysilane-based gels has been produced by the sol-gel technique and used to fabricate a chemically bulk-modified electrode. GeMo12 acts as a catalyst, graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone, and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. The GeMo12-modified graphite organosilicate composite electrode was characterized by cyclic and square-wave voltammetry. The modified electrode shows a high electrocatalytic activity toward the reduction of bromate, nitrite and hydrogen peroxide in acidic aqueous solution. In addition, the chemically-modified electrode has some distinct advantages over the traditional polyoxometalate-modified electrodes, such as long-term stability and especially repeatability of surface-renewal by simple mechanical polishing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present our experimental results supporting optical-electrical hybrid data storage by optical recording and electrical reading using Ge2Sb2Te5as recording medium. The sheet resistance of laser- irradiated Ge2Sb2Te5. lms exhibits an abrupt change of four orders of magnitude ( from 10 7 to 10 3./ sq) with increasing laser power, current- voltage curves of the amorphous area and the laser- crystallized dots, measured by a conductive atomic force microscope ( C- AFM), show that their resistivities are 2.725 and 3.375 x 10- 3., respectively, the surface current distribution in the. lms also shows high and low resistance states. All these results suggest that the laser- recorded bit can be read electrically by measuring the change of electrical resistivity, thus making optical electrical hybrid data storage possible.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel periodic mesoporous organosilica (PMO) material was synthesized through one-step co-condensation of 1,2-bis(triethoxysilyl)ethane (BTESE) and benzoic acid-functionalized organosilane (BA-Si) using cetyltrimethylammonium bromide (CTAB) as a structure-directing agent under basic conditions. The materials were fully characterized by FTIR, XRD, N-2 adsorption-desorption isotherms and FESEM. FTIR spectra proved that BA-Si was successfully incorporated into the PMO materials (PMOs) via benzyl group as a linker. XRD and N-2 adsorption-desorption isotherms revealed the characteristic mesoporous structure with highly uniform pore size distributions. FESEM confirmed that the morphology of the PMOs was significantly dependent cri the molar ratio of two organosilica precursors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

介绍一种可用于微电子封装局部应变场分析的实验/计算混合方法,该方法结合了有限元的整体/局部模型和实时的激光云纹干涉技术,利用激光云纹干涉技术所测得的应变场来校核有限元整体模型的计算结果,并用整体模型的结果作为局部模型的边界条件,对实验难以确定的封装结构局部位置的应力、应变场进行分析.用这种方法对可控坍塌倒装封装结构在热载荷作用下焊球内的应变场分布进行了分析,结果表明该方法能够提供封装结构内应力-应变场分布的准确和可靠的结果,为微电子封装的可靠性分析提供重要的依据. For the reliability analysis of electronic packages, strains in very localized areas, such as an interconnection or a corner, need to be determined. In this paper, a modified hybrid method of global/local modeling and real time moire interferometry is presented. In this method, a simplified, coarsely meshed global model is developed to get rough information about the deformation of the microelectronic package. In order to make sure the global model has been reasonably simplified and the material properties ...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a new definition of SE and CE, which is based on the hexahedron mesh and simpler than Chang's original CE/SE method (the space-time Conservation Element and Solution Element method), is proposed and an improved CE/SE scheme is constructed. Furthermore, the improved CE/SE scheme is extended in order to solve the elastic-plastic flow problems. The hybrid particle level set method is used for tracing the interfaces of materials. Proper boundary conditions are presented in interface tracking. Two high-velocity impact problems are simulated numerically and the computational results are carefully compared with the experimental data, as well as the results from other literature and LS-DYNA software. The comparisons show that the computational scheme developed currently is clear in physical concept, easy to be implemented and high accurate and efficient for the problems considered. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the fabrication of an efficient amperometric hydrogen peroxide sensor with favorable properties is presented. Prussian blue (PB) was catalytically synthesized by Pt nanoparticles (Pt-nano) from ferric ferricyanide aqueous solution to form PB@Pt-nano hybrid, and it was confirmed by transmission electron microscope (TEM) and optical spectra. The electrochemical behavior of PB@Pt-nano was highly improved through its integration with poly(diallyldimethylammonium chloride) modified carbon nanotubes (PCNTs).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An easy surface-modified method has been developed to link -NH2 groups to the TiO2 colloidal spheres with nanoporous surface (f-TiO2). It was found that the as-prepared f-TiO2 is positively charged in neutral conditions and could act as an electrostatic anchor for nanosructures with opposite charge, Furthermore, platinum nanoparticles (Pt NPs) are successfully assembled on the f-TiO2 mainly via electrostatic interaction to fabricate a new kind of Pt NPs/TiO2 hybrid nanomaterial (f-TiO2-Pt NPs). The morphology, structure, and composition of the hybrids were characterized by the means of diverse techniques such as transmission electron microscopy, scanning electron microscopy, X-ray powder diffraction, and Raman spectra. Electrochemical experiments indicate the electrode modified with f-TiO2-Pt NPs shows prominent electrocatalytic activity toward the oxidation of hydrogen peroxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The La0.85MgxNi4.5Co0.35Al0.15 (0.05less than or equal toxless than or equal to0.35) system compounds have been prepared by are melting method under Ar atmosphere. X-ray diffraction (XRD) analysis reveals that the as-prepared alloys have different lattice parameters and cell volumes. The electrochemical properties of these alloys have been studied through the charge-discharge recycle testing at different temperatures and discharge currents. It is found that the La0.85Mg0.25Ni4.5Co0.35Al0.(15) alloy electrode is capable of performing high-rate discharge. Moreover, it has very excellent electrochemical properties as negative electrode materials in Ni-MH battery at low temperature, even at -40degreesC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochemical properties of rare earth AB(3)-type hydrogen storage alloys as negative electrode material and a polymer instead of 6 M KOH aqueous solution as solid state electrolyte in MH-Ni battery have been investigated at room temperature and 28degreesC first time. The partial replacement of Ni by Al and Mn elements increases the specific capacity and cycle stability of the alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The europium complex, Eu(TTA)(3)phen (TTA = thenoyltrifluoroacetone, phen = 1,10-phenanthroline) was successfully doped into organically modified silicate (ormosil) matrix-SiO2/(VTMOS+PMMA) (VTMOS = vinyltrimethoxysilane, PMMA = polymethylmethacrylate) via sol-gel process, and the luminescence properties of the resultant ormosil composite phosphors [ormosil: Eu(TTA)(3)phen were investigated compared with those of the pure Eu(TTA)(3)phen complex powder. The ormosil composite materials incorporated with Eu(TTA)(3)phen show the characteristic red emission of Eu3+ ion. The Eu3+ possesses fewer emission lines and longer lifetime in the hybrid phosphor than in the pure Eu(TTA)(3)phen complex. This has been explained from the viewpoint of the surrounding environment where the Eu3+ ion lies. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The giant basal spicules of the siliceous sponges Monorhaphis chuni and Monorhaphis intermedia (Hexactinellida) represent the largest biosilica structures on earth (up to 3 m long). Here we describe the construction (lamellar organization) of these spicules and of the comitalia and highlight their organic matrix in order to understand their mechanical properties. The spicules display three distinct regions built of biosilica: (i) the outer lamellar zone (radius: >300 mu m), (ii) the bulky axial cylinder (radius: <75 mu m), and (iii) the central axial canal (diameter: <2 mu m) with its organic axial filament. The spicules are loosely covered with a collagen net which is regularly perforated by 7-10 mu m large holes; the net can be silicified. The silica layers forming the lamellar zone are approximate to 5 mu m thick; the central axial cylinder appears to be composed of almost solid silica which becomes porous after etching with hydrofluoric acid (HF). Dissolution of a complete spicule discloses its complex structure with distinct lamellae in the outer zone (lamellar coating) and a more resistant central part (axial barrel). Rapidly after the release of the organic coating from the lamellar zone the protein layers disintegrate to form irregular clumps/aggregates. In contrast, the proteinaceous axial barrel, hidden in the siliceous axial cylinder, is set up by rope-like filaments. Biochemical analysis revealed that the (dominant) molecule of the lamellar coating is a 27-kDa protein which displays catalytic, proteolytic activity. High resolution electron microscopic analysis showed that this protein is arranged within the lamellae and stabilizes these surfaces by palisade-like pillars. The mechanical behavior of the spicules was analyzed by a 3-point bending assay, coupled with scanning electron microscopy. The load-extension curve of the spicule shows a biphasic breakage/cracking pattern. The outer lamellar zone cracks in several distinct steps showing high resistance in concert with comparably low elasticity, while the axial cylinder breaks with high elasticity and lower stiffness. The complex bioorganic/inorganic hybrid composition and structure of the Monorhaphis spicules might provide the blueprint for the synthesis of bio-inspired material, with unusual mechanical properties (strength, stiffness) without losing the exceptional properties of optical transmission. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stiffness behaviour of injection moulded short glass fibre/impact modifier/polypropylene hybrid composites has been investigated in this work by theoretical predictions and experiments. Predictions from the self-consistent method were found to be in good agreement with test results for the impact modifier/polypropylene blends. By taking into account of the fibre orientation distributions in the skin and core layers, the values of Young's modulus for the skin and core layers were predicted by employing Eshelby's equivalent inclusion method and the average induced strain approach. The prediction of the values of Young's modulus for the whole sample was obtained by applying the simple mixture theory of laminated composites to the predicted results for the skin and core layers. Good correlation between predicted and experimental Young's modulus values were found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The material response and failure mechanism of unidirectional metal matrix composite under impulsive shear loading are investigated in this paper. Both experimental and analytical studies were performed. The shear strength of unidirectional C-f/A356.0 composite and A356.0 aluminum alloy at high strain rate were measured with a modified split Hopkinson torsional bar technique. The results indicated that the carbon fibers did not improve the shear strength of aluminum matrix if the fiber orientation aligned with the shear loading axis. The microscopic inspection of the fractured surface showed a multi-scale zigzag feature which implied a complicated shear failure mechanism in the composite. In addition to testing, the micromechanical stress field in the composite was analyzed by the generalized Eshelby equivalent method (GEEM). The influence of cracking in matrix on the micromechanical stress field was investigated as well. The results showed that the stress distribution in the composite is quite nonhomogeneous and very high shear stress concentrations are found in some regions in the matrix. The high shear stress concentration in the matrix induces tensile cracking at 45 degrees to the shear direction. This in turn aggravates the stress concentration at the fiber/matrix interface and finally leads to a catastrophic failure in the composite. From the correlation between the analysis and experimental results, the shear failure mechanism of unidirectional C-f/A356.0 composite can be elucidated qualitatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, construction of hybrid device by integrating nanowires with F1-ATPase motors is described. The nickel nanowires and multi-segment nanowires, including gold and nickel, were fabricated by electrochemical deposition in nanoporous templates. The nickel nanowires functionalized by biotinylated peptide can be assembled directly onto F1-ATPase motors to act as the propellers. If the multicomponent nanowires, including gold and nickel, were selectively functionalized by the thiol group modified ssDNA and the synthetic peptide, respectively, the biotinylated F1- ATPase motors can be attached to the biotinylated peptide on nickel segment of the nanowires. Then, the multi-component nanowires can also be used as the propellers, and one may observe the rotations of the multi-component nanowires driven by F1-ATPase motors. Therefore, introduction of multiple segments along the length of a nanowire can lead to a variety of multiple chemical functionalities, which can be selectively bound to cells and special biomolecules. This method provides an insight for the construction of other hybrid devices with its controlling arrangement of different biomolecule on designed nanometer scale structures.