336 resultados para halide ions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Ho3+-doped YAlO3 (Ho : YAP) single crystal has been grown by the Czochralski technique. The polarized absorption spectra, polarized fluorescence spectra and fluorescence decay curve of the crystal are measured at room temperature. The spectroscopic parameters are calculated based on Judd-Ofelt theory, and the effective phenomenological intensity parameters Omega(2,eff), Omega(4,eff) and Omega(6,eff) are obtained to be 2.89 x 10(-20), 2.92 x 10(-20) and 1.32 x 10(-20) cm(2), respectively. The room-temperature fluorescence lifetime of the Ho3+ 5I(7) -> I-5(8) transition is measured to be 8.1 ms. Values of the absorption and emission cross-sections with different polarizations are presented for the I-5(7) manifold, and the polarized gain cross-section curves are also provided and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of counter-ions on the coagulation of biologically treated molasses wastewater using iron-based coagulants was investigated. Parameters such as removals of chemical oxygen demand (COD) and color, and residual turbidity, were measured to evaluate coagulation performance. Experimental results showed that ferric chloride and ferric nitrate were more effective than ferric sulfate at optimal dosages, achieving 89 to 90% and 98 to 99% of COD and color removals, respectively, with residual turbidity of less than 5 NTU. High-performance size exclusion chromatography (HPSEC) results revealed differences in the removal of the molecular weight fraction of organic compounds using iron salts. Scanning electron microscopy (SEM) showed randomly formed coagulated flocs characterized with irregular, sheet-like shapes. Nitrate and chloride counter-ions had similar effects on coagulation performance compared to sulfate. Both FeCl3 and Fe(NO3)(3) yielded better results than Fe(SO4)(2) under underdosed and optimum dosage conditions. Coagulation efficiency was less adversely affected in the overdosed regions, however, if sulfate rather than chloride or nitrate was present. Water Environ. Res., 81, 2293 (2009).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the photodegradation of the carcinogenic pollutant 2-naphthol in aqueous solution containing Aldrich humic acid (HA) and ferric ions (Fe(III)) under 125 W and 250 W high pressure mercury lamp (HPML, lambda >= 365 nm) irradiation was investigated. The photooxidation efficiencies were dependent on the pH values, light intensities and Fe(III)/HA concentration in the water, with higher efficiency at pHs 3-4, and 50 mu mol l(-1) Fe(III) with 20 mg l(-1) HA under 250 W HPML. The initial rate of photooxidation increases with increasing, the initial concentration of 2-naphthol from 10 mu mol l(-1) to 100 mu mol l(-1), while do not change at 50 and 100 mu mol l(-1). However, higher removal efficiency of 2-naphthol is achieved at its lower initial concentration of 10 mu mol l(-1), and initial rate of photooxidation is 0.193 mu mol l(-1) min(-1). Dissolved oxygen (DO) plays an important role in the system containing Fe(III)-HA complexes in which Fenton and photo-Fenton reactions were enhanced in the environment. Hydroxyl radicals produced in HA solution with or without ferric ions were determined by using benzene as free radical scavenger and phenol as scavenging products proportional to hydroxyl radicals. By using UV-Vis and excited fluorescence spectrum techniques, the main photooxidation products, which have higher absorption in the region of 240-340 nm, were found, and the mechanisms for the oxidative degradation is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural and magnetic properties of Cu+ ions-implanted GaN films have been reported. Eighty kilo-electron-volt Cu+ ions were implanted into n-type GaN film at room temperature with fluences ranging from 1 x 10(16) to 8 x 10(16) cm(-2) and subsequently annealed at 800 degrees C for 1 h in N-2 ambient. PIXE was employed to determine the Cu-implanted content. The magnetic property was measured by the Quantum Design MPMS SQUID magnetometer. No secondary phases or clusters were detected within the sensitivity of XRD. Raman spectrum measurement showed that the Cu ions incorporated into the crystal lattice positions of GaN through substitution of Ga atoms. Apparent ferromagnetic hysteresis loops measured at 10 K were presented. The experimental result showed that the ferromagnetic signal strongly increased with Cu-implanted fluence from 1 x 10(16) to 8 x 10(16) cm(-2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Er/Bi codoped SiO2 thin films were prepared by sol-gel method and spin-on technology with subsequent annealing process. The bismuth silicate crystal phase appeared at low annealing temperature while vanished as annealing temperature exceeded 1000 degrees C, characterized by X-ray diffraction, and Rutherford backscattering measurements well explained the structure change of the films, which was due to the decrease of bismuth concentration. Fine structures of the Er3+-related 1.54 mu m light emission (line width less than 7 nm) at room temperature was observed by photoluminescence (PL) measurement. The PL intensity at 1.54 gm reached maximum at 800 degrees C and decreased dramatically at 1000 degrees C. The PL dependent annealing temperature was studied and suggested a clear link with bismuth silicate phase. Excitation spectrum measurements further reveal the role of Bi3+ ions for Er3+ ions near infrared light emission. Through sol-gel method and thermal treatment, Bi3+ ions can provide a perfect environment for Er3+ ion light emission by forming Er-Bi-Si-O complex. Furthermore, energy transfer from Bi3+ ions to Er3+ ions is evidenced and found to be a more efficient way for Er3+ ions near infrared emission. This makes the Bi3+ ions doped material a promising application for future erbium-doped waveguide amplifier and infrared LED

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper compares the properties of silicon oxide and nitride as host matrices for Er ions. Erbium-doped silicon nitride films were deposited by a plasma-enhanced chemical-vapour deposition system. After deposition, the films were implanted with Er3+ at different doses. Er-doped thermal grown silicon oxide films were prepared at the same time as references. Photoluminescence features of Er3+ were inspected systematically. It is found that silicon nitride films are suitable for high concentration doping and the thermal quenching effect is not severe. However, a very high annealing temperature up to 1200 degrees C is needed to optically activate Er3+ which may be the main obstacle to impede the application of Er-doped silicon nitride.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman scattering measurements have been performed in Ga1-xMnxAs crystals prepared by Mn ions implantation, deposition, and post-annealing. The Raman spectrum measured from the implanted surface of the sample shows some weak phonon modes in addition to GaAs-like phonon modes, where the GaAs-like LO and TO phonons are found to be shifted by approximately 4 and 2 cm(-1), respectively, in the lower frequency direction compared to those observed from the unimplanted surface of the sample. The weak vibrational modes observed are assigned to hausmannite Mn3O4 like. The coupled LO-phonon plasmon mode (CLOPM), and defects and As related vibrational modes caused by Mn ions implantation, deposition, and post-annealing are also observed. The compositional dependence of GaAs-like LO phonon frequency is developed for strained and unstrained conditions and then using the observed LOGaAs peak, the Mn composition is evaluated to be 0.034. Furthermore, by analyzing the intensity of CLOPM and unscreened LOGaAs phonon mode, the hole density is evaluated to be 1.84 x 10(18) cm(-3). (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zn2SiO4:Mn2+, Zn2SiO4:Eu3+ and Zn2SiO4:Mn2+ Eu3+ phosphors were prepared by a sol-gel process and their luminescence spectra were investigated. The emission bands from intra-ion transitions of Mn2+ and Eu3+ samples were studied as a function of pressure. The pressure coefficient of Mn2+ emission was found to be -25.3 +/- 0.5 and -28.5 +/- 0.9 meV/GPa for Zn2SiO4:Mn2+ and Zn2SiO4:Mn2+ Eu3+, respectively. The Eu3+ emission shows only weak pressure dependence. The pressure dependences of the Mn2+ and Eu3+ emissions in Zn2SiO4:Mn2+ Eu3+ are slightly different from that in Zn2SiO4:Mn2+ and Zn2SiO4:Eu3+ samples, which can be attributed to the co-doping of Mn2+ and Eu3+ ions. The Mn2+ emission in the two samples, however, exhibits analogous temperature dependence and similar luminescence lifetimes, indicating no energy transfer from Mn2+ to Eu3+ occurs. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoluminescence (PL) of Mn-implanted quantum dot (QD) samples after rapid annealing is studied. It is found that the blue shift of the PL peak of the QDs, introduced by the rapid annealing, decreases abnormally as the implantation dose increases. This anomaly is probably related to the migration of Mn atoms to the InAs QDs during annealing, which leads to strain relaxation when Mn atoms enter InAs QDs or to the suppression of the inter-diffusion of In and Ga atoms when Mn atoms surround QDs. Both effects will suppress the blue shift of the QD PL peaks. The temperature dependence of the PL intensity of the heavily implanted QDs confirms the existence of defect traps around the QDs. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved Kerr rotation measurement in the (Ga,Mn)As diluted magnetic semiconductor allows direct observation of the dynamical properties of the spin system of the magnetic ions and the spin-polarized holes. Experimental results show that the magnetic ions can be aligned by the polarized holes, and the time scales of spin alignment and relaxation take place in tens and hundreds of picoseconds, respectively. The Larmor frequency and effective g factor obtained in the Voigt geometry show an unusual temperature dependence in the vicinity of the Curie temperature due to the exchange coupling between the photoexcited holes and magnetic ions. Such a spin coherent precession can be amplified or destructed by two sequential excitation pulses with circularly copolarized or oppositely polarized helicity, respectively. (c) 2006 American Institute of Physics.