76 resultados para diamond machining
Resumo:
散粒磨料研磨与固着磨料研磨是光学研磨加工过程中的两种主要手段,但两者材料去除的机制不同。目前针对高功率固体激光装置中的主要工作物质——磷酸盐激光钕玻璃的亚表面缺陷(SSD)研究相对较少,因此在实验的基础上,通过系统地研究固着磨料对磷酸盐激光钕玻璃的研磨工艺过程,分析了多种因素,如磨料粒径、载荷大小、机床转速,以及结合剂材料与冷却液等对钕玻璃亚表面缺陷形成的影响,并与散粒磨料研磨工艺所产生的亚表面缺陷进行了比较,对关键工艺参数进行定量,为高质量钕玻璃制造工艺的选型以及进一步优化亚表面缺陷提供了重要的参考数据。
Resumo:
We introduce a four-pass laser pulse compressor design based on two grating apertures with two gratings per aperture that is tolerant to some alignment errors and, importantly, to grating-to-grating period variations. Each half-beam samples each grating in a diamond-shaped compressor that is symmetric about a central bisecting plane. For any given grating, the two half-beams impinge on opposite sides of its surface normal. It is shown that the two split beams have no pointing difference from paired gratings with different periods. Furthermore, no phase shift between half-beams is incurred as long as the planes containing a grating line and the surface normal for each grating of the pair are parallel. For grating pairs satisfying this condition, gratings surfaces need not be on the same plane, as changes in the gap between the two can compensate to bring the beams back in phase. © 2008 Optical Society of America.
Resumo:
通过分析波矢沿任意方向的单轴晶体的折射率,在光轴位于入射面内时,给出了入射光分别为s光和p光的反射率拟合函数。利用改进的反射率扫描仪,测量了CaCO3晶体的s光和p光反射率随入射角变化情况,由理论拟合获得单轴晶体的两个主折射率,分别为no=1.6559和ne=1.4851。这种方法不需要对样品进行加工,其精度达到0.0001。另外,对于晶体光轴未知的情况,采用改进的布儒斯特技术分别测出三个晶体表面的布儒斯特角,由此可以确定光轴的方向。
Resumo:
本文从种群、群落、景观等水平研究了浑善达克沙地退化状况,发现浑善达克沙地生态系统退化严重。运用“以地养地”模式,建立自然保护地,能恢复浑善达克退化生态系统,同时能实现社区的经济发展。通过对自然保护区恢复潜力和可行性的分析,发现将“以地养地”模式推广到全旗,可实现全旗的可持续发展。运用自然保护区设计理论,对拟建自然保护区进行了设计,并对自然保护区-社区的区域可持续发展能力进行了分析,提出了可持续发展战略。有以下主要内容: 1)浑善达克沙地榆树疏林种群在人为干扰下处于衰退期。本研究表明,浑善达克沙地中部榆树疏林种群是一个数量处于下降的种群。中老龄龄级榆树较多,而年幼龄级榆树较少。种群静态生命表表明,幼苗库严重不足,种群进入中老龄期后,外界干扰(例如直接砍伐等)导致了个体较高的死亡量。按照一次平均推移法预测各龄级在未来20年、40年、60年及100年后的株数,老龄龄级株数将有所增加,而中幼年株数则下降。目前蓝旗榆种群中老年个体仍保持着比较旺盛生殖能力,应该充分利用这一特征,采取适度放牧、严禁超载过牧、严禁滥砍滥伐等措施,促进天然更新。 2)浑善达克沙地沙丘植物群落退化严重。浑善达克沙地中部典型固定沙丘调查表明,阴坡植物群落种类复杂,主要为耐阴乔木半乔木+灌木+柳灌丛类,群落较为稳定。阳坡主要以褐沙蒿、雾冰藜和虫实为主,种类组成较为简单,沙脊为沙蒿+半旱生杂草类,腰地形成木岩黄芪+半灌木半旱生杂草类。落沙地形成虫实+狗尾草优势群落,风蚀坑形成狗尾草+虫实+褐沙蒿优势群落。顶部则形成虫实单优势群落。固定沙丘退化严重,有活化的可能,需要加强保护,控制放牧强度。 3)浑善达克沙地榆树疏林在景观水平上破碎化严重。研究发现榆树疏林斑块在全旗分布不均匀,斑块集中分布于北部苏木。其中有20个嘎查所含疏林斑块面积较多,占该旗疏林斑块总面积的86%,是主要分布区。榆树疏林斑块密度较低,斑块边界割裂严重,斑块之间分离度高,大斑块较少,小斑块数量多。 4)建立保护区可恢复浑善达克退化生态系统。运用以地养地模式,将大部分退化沙地围封保护,进行自然恢复;在小面积土地上建立了高产高效饲料基地,以向上一营养级提供足够的能量。结果表明,牲畜的压力逐步向小范围的土地集中,而大面积的退化草地借助自然力逐步恢复。群落生物量、平均高度和总盖度2年后均显著增加。植被组成方面,优质牧草比例提高。生态恢复不仅使自然生态系统得以恢复,而且带动了社会经济的发展,项目中的正蓝旗巴音胡舒嘎查牧民,在实验示范以后,年人均收入提高了32%。在全旗自然保护区建成后,大量居民将从保护区内迁移到城镇中去,有利于提高城市化水平,有利于调整产业结构,对于当前逐渐发展的二、三产业有促进作用;同时,自然保护区面积扩大有利于城市人口增长,能为城市发展提供消费食物来源、水源保障、环境保障。 5)拟建自然保护区设计。按照景观规划理论、Diamond自然保护区设计原则,选择榆树疏林斑块集中分布区,作为潜在核心区,运用ArcGIS的缓冲区分析功能,设计不同的宽度。同时调查斑块外不同距离样方与疏林斑块的群落相似度。由此而初步确定的核心区分布在正蓝旗23个嘎查,面积1 531 km2,约占全旗总面积的15%。根据核心区边界的生态、经济社会发展等因素,以及保护核心区所需要的最小宽度、当地土地利用所能规划的最大宽度,确定了不同区域的缓冲区宽度。由此而确定的缓冲区面积为1140km2,占保护区总面积的11.2%。其他地区均设置为过渡区,面积为7514km2,占保护区总面积的73.8%。 6)浑善达克自然保护区-社区的可持续发展。按照区域可持续发展理论,对浑善达克自然保护区-社区的各个苏木、镇、牧场、示范区,按照环境、经济、社会三个子系统进行了综合评价。发现可以按照区域可持续发展原则将正蓝旗划分为四个区域、两条畜产品产业带,简称“四区两带”战略:北部景观保护区、西部生态功能恢复区,以自然保护和生态恢复为主;中部社会经济服务区,以经济社会发展为主,集中建设好三个小城镇,发展集约化畜牧业、生态旅游产业;南部低山丘陵农业区,以及沿国道、省道的畜产品产业带。
Resumo:
Field emissions (FE) from La-doped zinc oxide (ZnO) films are both experimentally and theoretically investigated. Owing to the La-doped effect, the FE characteristic of ZnO films is remarkably enhanced compared with an undoped sample, and a startling low turn-on electric field of about 0.4 V/mu m (about 2.5 V/mu m for the undoped ZnO films) is obtained at an emission current density of 1 mu A/cm(2) and the stable current density reaches 1 mA/cm(2) at an applied field of about 2.1 V/mu m. A self-consistent theoretical analysis shows that the novel FE enhancement of the La-doped sample may be originated from its smaller work function. Due to the effect of doping with La, the Fermi energy level lifts, electrons which tunnelling from surface barrier are consumedly enhancing, and then leads to a huge change of field emission current. Interestingly, it suggests a new effective method to improve the FE properties of film materials.
Resumo:
Cubic boron nitride (c-BN) films were deposited on Si(001) substrates in an ion beam assisted deposition (IBAD) system under various conditions, and the growth parameter spaces and optical properties of c-BN films have been investigated systematically. The results indicate that suitable ion bombardment is necessary for the growth of c-BN films, and a well defined parameter space can be established by using the P/a-parameter. The refractive index of BN films keeps a constant of 1.8 for the c-BN content lower than 50%, while for c-BN films with higher cubic phase the refractive index increases with the c-BN content from 1.8 at chi(c) = 50% to 2.1 at chi(c) = 90%. Furthermore, the relationship between n and rho for BN films can be described by the Anderson-Schreiber equation, and the overlap field parameter gamma is determined to be 2.05.
Resumo:
In-situ energy dispersive x-ray diffraction on ZnS nanocrystalline was carried out under high pressure by using a diamond anvil cell. Phase transition of wurtzite of 10 nm ZnS to rocksalt occurred at 16.0 GPa, which was higher than that of the bulk materials. The structures of ZnS nanocrystalline at different pressures were built by using materials studio and the bulk modulus, and the pressure derivative of ZnS nanocrystalline were derived by fitting the equation of Birch-Murnaghan. The resulting modulus was higher than that of the corresponding bulk material, which indicates that the nanomaterial has higher hardness than its bulk materials.
Resumo:
To investigate the effect of radiation damage on the stability and the compressive stress of cubic boron nitride (c-BN) thin films, c-BN films with various crystalline qualities prepared by dual beam ion assisted deposition were irradiated at room temperature with 300 keV Ar+ ions over a large fluence range up to 2 x 10(16) cm(-2). Fourier transform infrared spectroscopy (FTIR) data were taken before and after each irradiation step. The results show that the c-BN films with high crystallinity are significantly more resistant against medium-energy bombardment than those of lower crystalline quality. However, even for pure c-BN films without any sp(2)-bonded BN, there is a mechanism present, which causes the transformation from pure c-BN to h-BN or to an amorphous BN phase. Additional high resolution transmission electron microscopy (HRTEM) results support the conclusion from the FTIR data. For c-BN films with thickness smaller than the projected range of the bombarding Ar ions, complete stress relaxation was found for ion fluences approaching 4 x 10(15) cm(-2). This relaxation is accompanied, however, by a significant increase of the width of c-BN FTIR TO-line. This observation points to a build-up of disorder and/or a decreasing average grain size due to the bombardment. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
An in situ energy dispersive x-ray diffraction study on nanocrystalline ZnS was carried out under high pressure up to 30.8 GPa by using a diamond anvil cell. The phase transition from the wurtzite to the zinc-blende structure occurred at 11.5 GPa, and another obvious transition to a new phase with rock-salt structure also appeared at 16.0 GPa-which was higher than the value for the bulk material. The bulk modulus and the pressure derivative of nanocrystalline ZnS were derived by fitting the Birch-Murnaghan equation. The resulting modulus was higher than that of the corresponding bulk material, indicating that the nanomaterial has higher hardness than the bulk material.
Resumo:
In situ energy dispersive X-ray diffraction measurements on nanocrystalline zinc sulfide have been performed by using diamond anvil cell with synchrotron radiation. There is a phase transition which the ultimate structure is rocksalt when the pressure is up to 16.0GPa. Comparing the structure of body materials, the pressure of the phase transition of nano zinc sulfide is high. We fit the: Birch-Murnaghan equation of state and obtained its ambient pressure bulk modulus and its pressure derivative. The bulk modulus of nanocrystalline zinc sulfide is higher than that of body materials, it indicate that the rigidity of nanocrystalline zinc sulfide is high.
Resumo:
Nanocrystalline diamond films were grown by a two-step process on Si(1 0 0) substrate, which was first pretreated by pure carbon ions bombardment. The bombarded Si substrate was then transformed into a hot-filament chemical vapor deposition (HFCVD) system for further growth. Using the usual CH4/H-3 feed gas ratio for micro crystalline diamond growth, nanodiamond crystallites were obtained. The diamond nucleation density is comparable to that obtained by biasing the substrate. The uniformly distributed lattice damage is proposed to be responsible for the formation of the nanodiamond. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Considering the complexity of the general plasma techniques, pure single CH3+ ion beams were selected for the deposition of hydrogenated amorphous (a) carbon films with various ion energies and temperatures. Photoluminescence (PL) measurements have been performed on the films and violet/blue emission has been observed. The violet/blue emission is attributed to the small size distribution of sp(2) clusters and is related to the intrinsic properties of CH3 terminals, which lead to a very high barrier for the photoexcited electrons. Ion bombardment plays an important role in the PL behavior. This would provide further insight into the growth dynamics of a-C:H films. (C) 2002 American Institute of Physics.
Resumo:
The evolution of carbonization process on Si as a function of ion dose has been carried out by mass-selected ion-beam deposition technique. 3C-SiC layer has been obtained at low ion dose, which has been observed by reflection high energy electron diffraction and X-ray photoelectron spectroscopy (XPS). The chemical states of Si and carbon have also been examined as a function of ion dose by XPS. Carbon enrichment was found regardless of the used ion dose here, which may be due to the high deposition rate. The formation mechanism of SiC has also been discussed based on the subplantation process. The work will also provide further understanding of the ion-bombardment effect. (C) 2001 Published by Elsevier Science B.V.
Resumo:
Carbon films were deposited by mass-selected ion beam technique with ion energies 50-200eV at a substrate temperature from room temperature to 80 degreesC,. For the energies used, smooth diamond-like carbon films were deposited at room temperature. When the substrate temperature was 600 degreesC,rough graphitic films were produced. But highly oriented carbon tubes were observed when the energies were larger than 140eV at 800 degreesC. They were perpendicular to the surface and parallel to each other. preferred orientation of graphite basic plane was observed by high-resolution electron microscopy. Shallow ion implantation and stress are responsible for this orientation.
Resumo:
Micro-Raman measurements were carried out to investigate the microstructure of amorphous silicon-nitrogen alloy (a-SiNx:H) samples with different N contents prepared by plasma enhanced chemical vapor deposition (PECVD). Resonant Raman effect was discovered by using 647.1- and 514.5-nm excitation wavelengths. The frequency of TO mode downshifts with increasing photon energy without varying its width, while LO mode expands to a great extent. The frequency-dependent shift of TO band is explained by heterogeneous structure model and quantum confinement model, and the width expansion of LO mode may be related to the overlapping of LA and LO bands. (C) 2001 Elsevier Science B.V. All rights reserved.