79 resultados para concentration quenching model
Resumo:
The technology of laser quenching is widely used to improve the surface properties of steels in surface engineering. Generally, laser quenching of steels can lead to two important results. One is the generation of residual stress in the surface layer. In general, the residual stress varies from the surface to the interior along the quenched track depth direction, and the residual stress variation is termed as residual stress gradient effect in this work. The other is the change of mechanical properties of the surface layer, such as the increases of the micro-hardness, resulting from the changes of the microstructure of the surface layer. In this work, a mechanical model of a laser-quenched specimen with a crack in the middle of the quenched layer is developed to quantify the effect of residual stress gradient and the average micro-hardness over the crack length on crack tip opening displacement (CTOD). It is assumed that the crack in the middle of the quenched layer is created after laser quenching, and the crack can be a pre-crack or a defect due to some reasons, such as a void, cavity or a micro-crack. Based on the elastic-plastic fracture mechanics theory and using the relationship between the micro-hardness and yield strength, a concise analytical solution, which can be used to quantify the effect of residual stress gradient and the average micro-hardness over the crack length resulting from laser quenching on CTOD, is obtained. The concise analytical solution obtained in this work, cannot only be used as a means to predict the crack driving force in terms of the CTOD, but also serve as a baseline for further experimental investigation of the effect after laser-quenching treatment on fracture toughness in terms of the critical CTOD of a specimen, accounting for the laser-quenching effect. A numerical example presented in this work shows that the CTOD of the quenched can be significantly decreased in comparison with that of the unquenched. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We model the electrical behavior of organic light-emitting diodes whose emissive multilayer is formed by blends of an electron transporting material, tris-(8-hydroxyquinoline) aluminum (Alq(3)) and a hole transporting material, N,N-'-diphenyl-N,N-'-bis(1,1(')-biphenyl)-4,4-diamine. The multilayer is composed of layers of different concentration. The Alq(3) concentration gradually decreases from the cathode to the anode. We demonstrate that these graded devices have higher efficiency and operate at lower applied voltages than devices whose emissive layer is made of nominally homogeneous blends. Our results show an important advantage of graded devices, namely, the low values of the recombination rate distribution near the cathode and the anode, so that electrode quenching is expected to be significantly suppressed in these devices.
Resumo:
A quasi-steady state growth and dissolution in a 2-D rectangular enclosure is numerically investigated. This paper is an extension to indicate the effects of the orientation of gravity on the concentration field in crystallization from solution under microgravity, especially on the lateral non-uniformity of concentration distribution at the growth surface. The thermal and solute convection are included in this model.
Resumo:
The physical vapor transport (PVT) method is being widely used to grow large-size single SiC crystals. The growth process is associated with heat and mass transport in the growth chamber, chemical reactions among multiple species as well as phase change at the crystal/gas interface. The current paper aims at studying and verifying the transport mechanism and growth kinetics model by demonstrating the flow field and species concentration distribution in the growth system. We have developed a coupled model, which takes into account the mass transport and growth kinetics. Numerical simulation is carried out by employing an in-house developed software based on finite volume method. The results calculated are in good agreement with the experimental observation.
Resumo:
The particulate matter concentration above the seabed is usually assumed to decrease with height, following an exponential or Rouse profile. Many particulate matter concentration profiles with a peak were found on the North Mediterranean bottom water at a few tens of metres above the bottom. A particle size signal at the same altitude was found in this area and on the New York Eight shelf. It is assumed that this unexpected shape is due to a cloud of resuspended cohesive sediments originating from an impulse resuspension process. A simplified three-dimensional numerical model is proposed to describe the behaviour of resuspended particulate matter that originates from a sediment impulse vertically injected in the bottom water. This model reproduces the concentration profile shape observed, and it gives indications concerning the length and time characteristics of such a cloud, depending on the water velocity and bottom boundary layer properties.
Resumo:
发展了一种新的分析涂层结构(平板、梁)热残余应力的模型,可以研究骤冷过程(Quenching)和冷却过程(Cooling)在涂层结构内引发的残余应力分布。与以往模型相比,其优势在于:它可以考虑源于喷涂过程的涂层孔隙率、温度梯度等因素对于涂层和基底内残余应力的影响。其中孔隙率和温度分布由计算机模拟涂层沉积过程得到。另外,当基底的材料和几何参数被固定时,我们分析了诸如涂层的理想模量、厚度、热膨胀系数等参数,对于涂层结构中最终残余应力分布的改变机理。
Resumo:
A two-dimensional kinematic wave model was developed for simulating runoff generation and flow concentration on an experimental infiltrating hillslope receiving artificial rainfall. Experimental observations on runoff generation and flow concentration on irregular hillslopes showed that the topography of the slope surface controlled the direction and flow lines of overland flow. The model-simulated results satisfactorily compared with experimental observations. The erosive ability of the concentrated flow was found to mainly depend on the ratio of the width and depth of confluent grooves.
Resumo:
Based on the fact that the concentration flowlines of overland flow depend on the surface landform of hillslope, a kinematic wave model was developed for simulating runoff generation and flow concentration caused by rainfall on hillslopes. The model-simulated results agree well with experimental observations. Applying the model to the practical case of Maoping slope, we obtained the characteristics of runoff generation and infiltration on the slope. Especially, the simulated results adequately reflected the confluent pattern of surface runoff, which offers a scientific foundation for designing the drainage engineering on the Maoping slope.
Resumo:
A semi-gas kinetics (SGK) model for performance analyses of flowing chemical oxygen-iodine laser (COIL) is presented. In this model, the oxygen-iodine reaction gas flow is treated as a continuous medium, and the effect of thermal motions of particles of different laser energy levels on the performances of the COIL is included and the velocity distribution function equations are solved by using the double-parameter perturbational method. For a premixed flow, effects of different chemical reaction systems, different gain saturation models and temperature, pressure, yield of excited oxygen, iodine concentration and frequency-shift on the performances of the COIL are computed, and the calculated output power agrees well with the experimental data. The results indicate that the power extraction of the SGK model considering 21 reactions is close to those when only the reversible pumping reaction is considered, while different gain saturation models and adjustable parameters greatly affect the output power, the optimal threshold gain range, and the length of power extraction.
Resumo:
The results of experiments in open channels and closed pipelines show two kinds of patterns for the vertical distribution of particle concentration (i.e., pattern I and pattern II). The former shows a pattern of maximum concentration at some location above the bottom and the downward decay of the concentration below the location. The latter always shows an increase of the particle concentration downward over the whole vertical, with the maximum value at the bottom. Many investigations were made on the pattern II, but few were made on pattern I. In this paper, a particle velocity distribution function is first obtained in the equilibrium state or in dilute steady state for the particle in two-phase flows, then a theoretical model for the particle concentration distribution is derived from the kinetic theory. More attention is paid to the predictions of the concentration distribution of pattern I and comparisons of the present model are made with the data measured by means of laser doppler anemometry (LDA). Very good agreements are obtained between the measured and calculated results.
Resumo:
A mathematical model is presented for the numerical simulation of the flow, temperature, and concentration fields in an rf plasma chemical reactor. The simulation is performed assuming chemical equilibrium. The extent of validity of this assumption is discussed. The system considered is the reaction of SiCl4 and NH3 for the production of Si3N4.
Resumo:
A kinetic model has been developed for the prediction of the concentration gelds in an rf plasma reactor. A sample calculation for a SiCl4/H2 system is then performed. The model considers the mixing processes along with the kinetics of seven reactions involving the decomposition of these reactants. The results obtained are compared to those assuming chemical equilibrium. The predictions indicate that an equilibrium assumption will result in lower predicted temperature fields in the reactor. Furthermore, for the chemical system considered here, while differences exist between the concentration fields obtained by the two models, the differences are not substantial.
Resumo:
The problem of the concentration jump of a vapour in the vicinity of a plane wall, which consists of the condensed phase of the vapour, in a rarefied gas mixture of that vapour (A) and another 'inert' gas (B), is considered. The general formulation of the problem of determining the concentration-jump coefficient for dA is given. In the Knudsen layer the simplest model of Boley-Yip theory is used to simplify the Boltzmann equations for the binary gas mixture. The numerical calculation of the concentration jump coefficient for dA for various values of evaporation coefficient of A is illustrated for the case of the equilibrium concentration of B being much greater than that of A, for which experimental data are available.
Resumo:
The physical vapor transport (PVT) method is being widely used to grow large-size single SiC crystals. The growth process is associated with heat and mass transport in the growth chamber, chemical reactions among multiple species as well as phase change at the crystal/gas interface. The current paper aims at studying and verifying the transport mechanism and growth kinetics model by demonstrating the flow field and species concentration distribution in the growth system. We have developed a coupled model, which takes into account the mass transport and growth kinetics. Numerical simulation is carried out by employing an in-house developed software based on finite volume method. The results calculated are in good agreement with the experimental observation.
Resumo:
The effects of the free-stream thermo-chemical state on the test model flow field in the high-enthalpy tunnel are studied numerically. The properties of the free-stream, which is in thermo-chemical non-equilibrium, are determined by calculating the nozzle flow field. A free-stream with total enthalpy equal to the real one in the tunnel while in thermo-chemical equilibrium is constructed artificially to simulate the natural atmosphere condition. The flow fields over the test models (blunt cone and Apollo command capsule model) under both the non-equilibrium and the virtual equilibrium free-stream conditions are calculated. By comparing the properties including pressure, temperature, species concentration and radiation distributions of these two types of flow fields, the effects of the non-equilibrium state of the free-stream in the high-enthalpy shock tunnel are analyzed.