64 resultados para composite material


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A material model for whisker-reinforced metal-matrix composites is constructed that consists of three kinds of essential elements: elastic medium, equivalent slip system, and fiber-bundle. The heterogeneity of material constituents in position is averaged, while the orientation distribution of whiskers and slip systems is considered in the structure of the material model. Crystal and interface sliding criteria are addressed. Based on the stress-strain response of the model material, an elasto-plastic constitutive relation is derived to discuss the initial and deformation induced anisotropy as well as other fundamental features. Predictions of the present theory for unidirectional-fiber-reinforced aluminum matrix composites are favorably compared with FEM results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Composite sapphire/Ti:sapphire crystals for high-power laser application were grown by the hydrothermal method. The results of the X-ray rocking curve analysis indicate high crystalline quality of the surface Al2O3 material. The strong bonding between the overgrown Al2O3 and seed Ti:Al2O3 crystals is indispensable for withstanding high thermal stresses produced by intense optical pumping. The optical loss at the boundary of the composite crystal is considerably low, indicating the lack of scattering centers. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel composite InxGa1-xAs/GaAs/GaAs/AlxGa1-xAs multiple quantum well material with different well widths was studied as a new kind of photoelectrode in a photoelectrochemical cell. The photocurrent spectrum and photocurrent-electrode potential curve were measured in ferrocene nonaqueous solution. Pronounced quantization effects and strong exciton absorption were observed in the photocurrent spectrum. The effects of surface states and interfacial states on the photocurrent-electrode potential curve are discussed. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous polytetrafluoroethylene (PTFE) membranes were used as support material for Nafion((R))/PTFE composite membranes. The composite membranes were synthesized by impregnating porous PTFE membranes with a self-made Nafion solution. The resulting composite membranes were mechanically durable and quite thin relative to traditional perfluorosulfonated ionomer membranes (PFSI); we expect the composite membranes to be of low resistance and cost. In this study, we used three kinds of porous PTFE films to prepare Nafion/PTFE composite membranes of different thickness. Scanning electron micrographs and oxygen permeabilities showed that Nafion resin is distributed uniformly in the composite membrane and completely plug the micropores, there is a continuous thin Nation film present on the PTFE surface. The variation in water content of the composite and Nafion 115 membranes with temperature was determined. At the same temperature, water content of the composite membranes was smaller than that of the Nafion 115. In both dry and wet conditions, maximum strength and break strength of C-325(#) and C-345(#) were larger than those of Nafion 112 due to the reinforcing effect of the porous PTFE films. And the PEMFC performances and the lifetime of the composite membranes were also tested on the self-made apparatus. Results showed that the bigger the porosity of the substrate PTFE films, the better the fuel cell performance; the fuel cell performances of the thin composite membranes were superior to that of Nation 115 membrane; and after 180 h stability test at 500 mA/cm(2), the cell voltage showed no obvious drop. (C) 2002 Published by Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the excel lent catalytic activity of highly ordered mesoporous carbons (OMCs) to the electrooxidation of nicotinamide adenine dinucleotide (NADH) and hydrogen peroxide (H2O2) was described for the construction of electrochemical alcohol dehydrogenase (ADH) and glucose oxidase (GOD)-based biosensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel cemented carbides (W0.7Al0.3)C-0.65-Co with different cobalt contents were prepared by solid-state reaction and hot-pressing technique. Hot-pressing technique as a novel technique was performed to fabricate the bulk bodies of the hard alloys. The novel cemented carbides have superior mechanical properties compared with WC-Co. The density, operate cost of the novel material were lower than WC-Co system. The novel materials were easy to process nanoscale sintering and get the rounded particles in the bulk materials. There is almost no eta-phase in the (W0.7Al0.3)C-0.65-Co cemented carbides system although the carbon deficient get the astonished 35% value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel nano-scaled bulk hard material (W0.5Al0.5)C-Co with "rounded" grains was prepared by nanocrystalline "rounded" (W0.5Al0.5)C powders with "rounded" particle shape in this study. The nano-scaled "rounded" particles do not contain sharp edges, which form local tensile stress concentrations on loading of the composite, thus leading to improved toughness and reduced sensitivity to crack. Nanocrystalline (W0.5Al0.5)C powders with "rounded" particle shape were used as starting materials. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used to characterize the samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel cemented carbides (W0.5Al0.5)C-0.8-Co with different cobalt contents were prepared by mechanical alloying and hot-pressing technique. Hot-pressing technique as a common technique was performed to fabricate the bulk bodies of the hard alloys. The novel cemented carbides have superior mechanical properties compared to WC-Co. The density, operating cost of the novel material were much lower than WC-Co. There is almost no eta-phase in the (W0.5Al0.5)C-0.8-Co cemented carbides system although the carbon deficient get the value of 20%, and successfully got the nanostructured rounded (W0.5Al0.5)C-0.8 particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel cemented carbides (W0.4Al0.6)C-0.5-Co With different cobalt contents were prepared by mechanical alloying and hot-pressing technique. Hot-pressing technique as a common technique was performed to fabricate the bulk bodies of the hard alloys. The novel cemented carbides have good mechanical properties compared with WC-Co. The density and operation cost of the novel material were much lower than the WC-Co system. It was easy to process submicroscale sintering with the novel materials and obtain the rounded particles in the bulk materials. There is almost no eta-phase in the (W0.4Al0.6)C-0.5-CO cemented carbides system although the carbon deficient obtains the astonishing value of 50%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nd2CexO3+2x (x = 2.25, 2.5, 2.75, 3.0) were synthesized by solid-state reaction, and their phase stabilities and thermophysical properties were investigated. The X-ray diffraction (XRD) results indicated that Nd2CexO3+2x with fluorite structure were stable after long-term annealing at 1673 K. They have higher thermal expansion coefficients (TECs) than yttria-stabilized zirconia (YSZ) which is the typical thermal barrier coating (TBC) material, especially the thermal expansion as a function of temperature is parallel to that of the nickel-based superalloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiwalled carbon nanotubes@SnO2-Au (MWCNTs@SnO2-Au) composite was synthesized by a chemical route. The structure and composition of the MWCNTs@SnO2-Au composite were confirmed by means of transmission electron microscopy, X-ray photoelectron and Raman spectroscopy. Due to the good electrocatalytic property of MWCNTs@SnO2-Au composite, a glucose biosensor was constructed by absorbing glucose oxidase (GOD) on the hybrid material. A direct electron transfer process is observed at the MWCNTs@SnO2-Au/GOD-modified glassy carbon electrode. The glucose biosensor has a linear range from 4.0 to 24.0 mM, which is suitable for glucose determination by real samples. It should be worthwhile noting that, from 4.0 to 12.0 mM, the cathodic peak currents of the biosensor decrease linearly with increasing the glucose concentrations in human blood. Meanwhile, the resulting biosensor can also prevent the effects of interfering species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lanthanum-zirconium-cerium composite oxide (La-2(Zr0.7Ce0.3)(2)O-7, LZ7C3) as a candidate material for thermal barrier coatings (TBCs) was prepared by electron beam-physical vapor deposition (EB-PVD). The composition, crystal structure, thermophysical properties, surface and cross-sectional morphologies and cyclic oxidation behavior of the LZ7C3 coating were studied. The results indicated that LZ7C3 has a high phase stability between 298 K and 1573 K, and its linear thermal expansion coefficient (TEC) is similar to that of zirconia containing 8 wt% yttria (8YSZ). The thermal conductivity of LZ7C3 is 0.87 W m(-1) K-1 at 1273 K, which is almost 60% lower than that of 8YSZ. The deviation of coating composition from the ingot can be overcome by the addition of excess CeO2 and ZrO2 during ingot preparation or by adjusting the process parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple, large scale, and one-step process for the preparation of tris(2,2'-bipyridyl)ruthenium(I) (Ru(bpy)(3)(2+)) doped SiO2@carbon nanotubes (MVNTs) coaxial nanocable used for an ultrasensitive electrochemiluminescence (ECL) is presented for the first time. More importantly, a directly coated as-formed functional material on ITO electrode surface exhibits excellent ECL behavior, good stability, and high sensitivity in the presence of tripropylamine (TPA). This novel functional material will find potential applications in biosensor, electrophoresis and electroanalysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new-type Mg2Si composite was prepared with Mg-9Al-1Zn (AZ91) alloy and vermiculite as raw materials by melt infiltration method. The results show that the microstructure of composite consists of a large amount Of Mg2Si precipitates and a little amount of MgO embedded in alpha-Mg matrix. The Vickers hardness of the composite is obviously higher than that of matrix of AZ91 alloy. Moreover, the composite exhibits excellent compressive property. The ultimate compressive strength of the material is 290 MPa, the yield strength is 175 MPa, and the elongation is about 5%, which are higher than those of AZ91 alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The approach of water droplets self-running horizontally and uphill without any other forces was proposed by patterning the shape-gradient hydrophilic material (i.e., mica) to the hydrophobic matrix (i.e., wax or low-density polyethylene (LDPE)). The shape-gradient composite surface is the best one to drive water droplet self-running both at the high velocity and the maximal distance among four different geometrical mica/wax composite surfaces. The driving force for the water droplets self-running includes: (1) the great difference in wettability of surface materials, (2) the low contact angle hysteresis of surface materials, and (3) the space limitation of the shape-gradient transportation area. Furthermore, the average velocity and the maximal distance of the self-running were mainly determined by the gradient angle (alpha), the droplet volume, and the difference of the contact angle hysteresis. Theoretical analysis is in agreement with the experimental results.