55 resultados para biochars, lithium-sulfur batteries, microporous structure, bamboo carbon–sulfur composites


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effect of La-Mg-based alloy (AB(5)) addition on Structure and electrochemical characteristics of Ti0.10Zr0.15V0.35Cr0.10Ni0.30 hydrogen storage alloy has been investigated systematically. XRD shows that the matrix phase structure is not changed after adding AB(5) alloy, however, the amount of the secondary phase increases with increasing AB(5) alloy content. The electrochemical measurements show that the plateau pressure Ti0.10Zr0.15V0.35Cr0.10Ni0.30 + x% La0.85Mg0.25Ni4.5Co0.35Al0.15 (X = 0, 1, 5, 10, 20) hydrogen storage alloys increase with increasing x, and the width of the pressure plateau first increases when x increases from 0 to 5 and then decreases as x increases further, and the maximum discharge capacity changes in the same trend.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ti-Zr-V-Mn-Ni-based multi-component alloys demonstrate high discharge capacity in KOH electrolyte. However, the drastic decrease in their discharge capacities makes them unsuitable for use as negative electrode material in the Ni/MH battery. In present work, Ni is partially replaced by Cr in the Ti-Zr-V-Mn-Ni-based alloys to improve their cycle life. The effects of Cr substitution on microstructures and the electrochemical characteristics of the alloys are investigated. It is found that Cr substitution is very effective to improve the cyclic durability of the alloys although the discharge capacity decreases with changing x from 0.05 to 0.20. Some kinetic performances have been also investigated using electrochemical impedance spectroscopy (EIS) and potentiostatic discharge technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new class of organic-inorganic hybrid porous clay heterostructures (HPCHs) have been prepared through the surfactant-directed assembly of organosilica in the galleries of montmorillonite. The reaction involved hydrolysis and condensation of phenyltriethoxysilane and tetraethoxysilane in the presence of intragallery surfactant templates (dodecylame and cetyltrimethylammonium ion). The surfactant templates were removed from the pores by solvent-extraction. The products were characterized by X-ray diffraction (XRD), N-2 adsorption, solid-state Si-29 and C-13 NMR, and FTIR. XRD patterns indicated a regular interstratification of the clay layers for HPCHs. Depending on loading of phenyl groups, HPCHs had BET surface areas of 390-771 m(2) g(-1), pore volumes of 0.3-0.59 cm(3) g(-1), and the framework pore sizes in the supermicropore to small mesopore range (1.2-2.6 nm). HPCHs were hydrophobic and acidic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an attempt to raise the transport number of Li+ to nearly unity in solid polymer electrolytes, commercial perfluorinated sulfonate acid membrane Nafion 117 was lithiated and codissolved with copolymer poly(vinylidene fluoride)hexafluoropropylene. The effect of fumed silica on the physical and electrochemical properties of the single ion conduction polymer electrolyte was studied with atom force microscopy, fourier transform infrared spectroscopy, differential scanning calorimetry, and electrochemical impedance spectroscopy. It was confirmed that the fumed silica has an obvious effect on the morphology of polymer electrolyte membranes and ionic conductivity. The resulting materials exhibit good film formation, solvent-maintaining capability, and dimensional stability. The lithium polymer electrolyte after gelling with a plasticizer shows a high ionic conductivity of 3.18 x 10(-4) S/cm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer-clay nanocomposite (PCN) materials were prepared by intercalation of an alkyl-ammonium ion spacing/coupling agent and a polymer between the planar layers of a swellable-layered material, such as montmorillonite (MMT). The nanocomposite lithium polymer electrolytes comprising such PCN materials and/or a dielectric solution (propylene carbonate) were prepared and discussed. The chemical composition of the nanocomposite materials was determined with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, which revealed that the alkyl-ammonium ion successfully intercalated the layer of MMT clay, and thus copolymer poly(vinylidene fluoride-hexafluoropropylene) entered the galleries of montmorillonite clay. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) were used to investigate the electrochemical properties of the lithium polymer electrolyte. Equivalent circuits were proposed to fit the EIS data successfully, and the significant contribution from MMT was thus identified. The resulting polymer electrolytes show high ionic conductivity up to 10(-3) S cm(-1) after felling with propylene carbonate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of La/Ce ratio on the structure and electrochemical characteristics of the La0.7-xCexMg0.3Ni2.8Co0.5 (x = 0.1, 0.2, 0.3, 0.4, 0.5) alloys has been studied systematically. The result of the Rietveld analyses shows that, except for small amount of impurity phases including LaNi and LaNi2, all these alloys mainly consist of two phases: the La(La, Mg)(2)Ni-9 phase with the rhombohedral PuNi3-type structure and the LaNi5 phase with the hexagonal CaCU5-type structure. The abundance of the La(La, Mg)(2)Ni-9 phase decreases with increasing cerium content whereas the LaNi5 phase increases with increasing Ce content, moreover, both the a and cell volumes of the two phases decrease with the increase of Ce content. The maximum discharge capacity decreases from 367.5 mAh g(-1) (x = 0.1) to 68.3 mAh g(-1) (x = 0.5) but the cycling life gradually improve. As the discharge current density is 1200 mA g(-1), the HRD increases from 55.4% (x = 0.1) to 67.5% (x = 0.3) and then decreases to 52.1% (x = 0.5). The cell volume reduction with increasing x is detrimental to hydrogen diffusion D and accordingly decreases the low temperature dischargeability of the La0.7-xCexMg0.3Ni2.8Co0.5 (x = 0.1-0.5) alloy electrodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The RENi3 (RE = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Y) series compounds have been prepared by arc melting constituent elements under Ar atmosphere. X-ray diffraction (XRD) analysis reveals that the as-prepared alloys have different lattice parameters and cell volumes, depending on different rare earth (RE) element. The electrochemical characteristics, including the electrochemical capacity, P-C isotherms, high rate chargeability (HRC) and high-rate dischargeability (HRD), of these alloys have been studied through the charge-discharge recycle testing at different temperatures, charge currents and discharge currents. The results show that YNi3 has the largest cell volume, smallest density, and moreover, it shows more satisfactory electrochemical characteristics than other alloys, including discharge capacity, HRC, HRD and low temperature dischargeablity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flat-sheet microporous membranes from F2.4 for membrane distillation (MD) were prepared by phase inversion process. Dimethylacetamide (DMAC) and LiClO(4)(.)3H(2)O/trimethyl phosphate (TMP) were, respectively, used as solvent and pore-forming additives. The effects of casting solution composition, exposure time prior to coagulation and temperature of precipitation bath on F2.4 membrane structure were investigated. The morphology of resultant porous membrane was observed by scanning electron microcopy. Some natures of F2.4 porous membrane after drying in air, such as mechanical properties and hydrophobicity, were exhibited and compared with poly(vinylidene fluoride) (PVDF) membrane prepared by the same ways. Stress-at-break and strength stress of F2.4 microporous membrane are higher than that of PVDF membrane, and elongation percentage of F2.4 membrane at break is about eight-fold as great as that of PVDF membrane. Contact angle of F2.4 microporous membrane to water (86.6 +/- 0.51degrees) was also larger than that of PVDF mernbrane (80.0 +/- 0.78degrees). MD experiment was carried out using a direct contact membrane distillation (DCMD) configuration as final test to permeate performance of resultant microporous membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Group 4 complexes containing diphosphinoamide ligands [Ph2PNR](2)MCl2 (3: R = Bu-t, M = Ti; 4: R = Bu-t, M = Zr; 5: R = Ph, M = Ti; 6: R = Ph, M = Zr) were prepared by the reaction Of MCl4 (M = Ti; Zr) with the corresponding lithium phosphinoamides in ether or THF. The structure of [(Ph2PNBu)-Bu-t](2)TiCl2 (3) was determined by X-ray crystallography. The phosphinoamides functioned as eta(2)-coordination ligands in the solid state and the Ti-N bond length suggests it is a simple single bond. In the presence of modified methylaluminoxane or i-Bu3Al/Ph3BC(C6F5)(4), catalytic activity of up to 59.5 kg PE/mol cat h bar was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lanthanocene chlorides (C4H7OCH2C9H6)(2)LnCl[Ln=Y(1); Ln=Gd(2)] were synthesized by the reaction of tetrahydrofurfurylindenyl lithium(in situ) with corresponding anhydrous lanthanide chorides in THF. The crystal structures of these two complexes were determined by X-ray diffraction and they were unsolvated monomeric complexes. They were stable in the air for several hours. Complexes 1 and 2 belong to the same crystal system (orthorhombic) and space group(P2(1)2(1)2(1)). The unit cell dimensions of complex 1 were a=1.042 52(9) nm, b=1.47455(12) nm, c=1.497 99(13) nm, Z=4, D-c=1.508 g/cm(3); The unit cell dimensions of complex 2 were a=1.037 01(10) nm, b=1.472 33(12) nm, c=1.513 54(14) nm, Z=4, D-c=1.699 g/cm(3). They have the same structure and different space configurations. The central metal atom is coordinated by two indenyl, two oxygen of the tetrahydrofurfuryl and one chlorine atom to form a distorted trigonal bipyramid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reaction of anhydrous ytterbium trichlorides with 2 equiv. of cyclopentylindenyl lithium in THF solution, followed by removal of the solvent MO. crystallization of the product from diethyl ether, affords a crystal complex of the composition (C5H9C9H6)(2)Yb(mu-Cl)(2)Li(Et2O)(2). Crystallographic analysis shows that the ytterbium coordinated by two cyclopentylindenyl rings and lithium surrounded by two ether molecules are bridged by the two chlorine atoms and Yb, U and two chlorine atoms form a plane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of compounds, La2/3 - xLi3xMoO4, were first prepared. Their structures are tetragonal scheelites with the cationic defects. The cell parameters a, c and values of c/a decrease with the increasing of the substitution amount (3x) of lithium ion. Cationic vacancies are getting more as Li+ concentration is lower. The diffusion of lithium ion is predominant. The concentration of charge carriers increases with increasing the substitution amount (3x) of lithium ion, meanwhile, the concentration of cationic vacancies decreases. The conductivity approaches the best when the substitution amount (3x) of lithium ion is about 0.3. The conductivity of La0.567Li0.3MoO4 is 6.5 x 10(-6) S . cm(-1) at room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rare earth complex (C5H9C9H6)(3)SmCl-Li+ (THF)(4)( I ) was synthesized by reacting anhydrous SmCl3 with two equivalents of C5H9C9H6Li. From mix-solvent of THF and hexane, red color single crystals were obtained. The crystal belongs to a cubic system, space group P2(1)3 with unit cell parameters a= b=c= 1. 754 0(2) nm, alpha=beta=gamma=90degrees, V=5. 396 4(11) nm(3), Z = 4. The ten-coordinated samarium atom is bonded to three cyclopentylindenyl rings and a chlorine atom to form the anionic part of the title complex, ring centroids and the chlorine atom form a tortured tetrahedron around samarium. In the cationic part, lithium atom coordinates to four oxygen atoms of THF molecules to form a normal tetrahedron. The Sm-C(within the same ring) distance varies from 0. 268 to 0. 299 nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new molybdenum-citrato cluster containing [Mo2O2(mu-S)(2)(C6H5O7)(C6H4O7)](5-) anion was synthesized and characterized by elemental analysis, IR, UV-Vis spectra, XPS and X-ray diffraction. The parameters of the crystal structure of the compound are monoclinic, space group P2(1)/c, a = 2. 376 6(5) nm, b = 1. 327 4(3) nm, c = 2. 247 1(5) nm, beta = 118. 21 degrees, V = 6. 247(2) nm(3), Z = 8, D-c = 2. 128 g/cm(3), F(000) = 3 984, mu = 1 694 cm(-1), R = 0. 083 1 and R-2,R-w = 0. 154 9. The anion is binuclear molybdenum-citrato complex with mu(2)-S bridge. Each molybdenum atom pocesesses a distorted octahedral struture, which is coordinated with a terminal oxygen, two sulfur atoms, three oxygen atoms of hydroxyl, alpha-carboxylate, beta-carboxylate from citrate.