37 resultados para affine subspace


Relevância:

10.00% 10.00%

Publicador:

Resumo:

图像匹配是计算机视觉中的一个重要研究领域,无论在民用还是军用上都有着重要的应用价值。本文以研究室国防重点预研究项目自动目标识别为背景,采用图像匹配方法,实现飞行器定位导航。具体工作流程是:事先利用侦察手段获取飞行器途经下方的地物景象(基准图)并存于飞行器载计算机中,然后当携带相应传感器的飞行器飞过预定的位置范围时,拍摄当地的地物景象(实时图),将实时图和基准图在飞行器载计算机中进行匹配比较,可确定当前飞行器的准确位置,完成定位导航功能。 由于对同一场景使用相同或不同的传感器(成像设备),以及在不同条件下(天候、照度、摄像位置和角度等)成像的复杂性和多样性等困难的存在,传统的相关匹配方法对上述困难的克服在方法原理上存在先天不足,所以无法胜任。故本文采用的方法是基于局部不变量特征的图像匹配。局部不变量特征因为能更灵活地描述图像,有效地处理图像复杂和遮挡问题,所以基于局部不变量特征的图像匹配方法对于视点的大变化,图像背景变化,以及目标场景识别等都有较好的效果。 基于局部不变量特征的图像匹配方法的步骤通常分为三部分:(1)用图像区域检测算子提取图像相关区域,(2)构造合适的特征描述区域,(3)选择特征相似度度量准则实现图像区域特征的匹配。本文详细研究了最大稳定极值区域 (MSER)方法,在此基础上进行了改进,具体工作如下:(1)利用高斯核函数对图像平滑采样,建立图像的高斯尺度空间,(2)在图像的高斯尺度空间中,利用MSER检测算子检测出图像在不同尺度下的所有仿射相关区域,(3)由于区域不规则,再用仿射不变的椭圆拟合并归一化,这时所有的区域仅存在旋转的不同,(4)用SIFT特征描述图像区域,得到所有区域的128维特征向量集。(5)采用欧式距离度量特征间的相似度,以最近邻和次近邻的比值作为特征匹配准则进行匹配。 本论文的主要研究工作在于把图像的高斯尺度空间引入到MSER算法中,进而大大改善了MSER算法对于图像的尺度变换、仿射变换以及图像模糊的性能。由于建立了高斯尺度空间,增加了MSER检测算子检测的范围,所以使得改进算法的性能得到了改善。论文第四章给出四组实验,分别为尺度变换,仿射变换,图像模糊和大视点变换。最后通过对匹配结果正确数量和错误数量的统计,论证了改进方法的性能要好于MSER算法。通过对算法复杂度的分析,得出虽然在改进算法引入了图像的高斯尺度空间,但是算法复杂度却并未增加,与MSER算法相同,为O(nloglogn)。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

在Freeman的逐点最小范数控制器的基础上,提出了一种新的非线性控制器设计框架-广义逐点最小范数控制器,并证明了其连续性.通过一个引导函数,新的控制器可以和其他的控制器设计策略结合,从而大大提高了控制器设计的灵活性.另外,给出了新方法的两个应用:改善局部线性化控制器稳定域较小的缺陷;及和其它控制器设计方法结合,使之能够简单有效地处理具有输入约束的系统.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

提出了一种新的模型直升机航向控制算法。针对具有模型不确定性的直升机航向线性模型,提出了一种具有自适应机制的最优保性能控制器。该控制策略通过引入自适应机制降低固定增益控制器所固有的保守性,并且控制器的反馈增益应用线性矩阵不等式(LMIs)方法解得。理论分析和数字仿真表明所设计的控制器具有良好的鲁棒稳定性能。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the fractal theories, contractive mapping principles as well as the fixed point theory, by means of affine transform, this dissertation develops a novel Explicit Fractal Interpolation Function(EFIF)which can be used to reconstruct the seismic data with high fidelity and precision. Spatial trace interpolation is one of the important issues in seismic data processing. Under the ideal circumstances, seismic data should be sampled with a uniform spatial coverage. However, practical constraints such as the complex surface conditions indicate that the sampling density may be sparse or for other reasons some traces may be lost. The wide spacing between receivers can result in sparse sampling along traverse lines, thus result in a spatial aliasing of short-wavelength features. Hence, the method of interpolation is of very importance. It not only needs to make the amplitude information obvious but the phase information, especially that of the point that the phase changes acutely. Many people put forward several interpolation methods, yet this dissertation focuses attention on a special class of fractal interpolation function, referred to as explicit fractal interpolation function to improve the accuracy of the interpolation reconstruction and to make the local information obvious. The traditional fractal interpolation method mainly based on the randomly Fractional Brown Motion (FBM) model, furthermore, the vertical scaling factor which plays a critical role in the implementation of fractal interpolation is assigned the same value during the whole interpolating process, so it can not make the local information obvious. In addition, the maximal defect of the traditional fractal interpolation method is that it cannot obtain the function values on each interpolating nodes, thereby it cannot analyze the node error quantitatively and cannot evaluate the feasibility of this method. Detailed discussions about the applications of fractal interpolation in seismology have not been given by the pioneers, let alone the interpolating processing of the single trace seismogram. On the basis of the previous work and fractal theory this dissertation discusses the fractal interpolation thoroughly and the stability of this special kind of interpolating function is discussed, at the same time the explicit presentation of the vertical scaling factor which controls the precision of the interpolation has been proposed. This novel method develops the traditional fractal interpolation method and converts the fractal interpolation with random algorithms into the interpolation with determined algorithms. The data structure of binary tree method has been applied during the process of interpolation, and it avoids the process of iteration that is inevitable in traditional fractal interpolation and improves the computation efficiency. To illustrate the validity of the novel method, this dissertation develops several theoretical models and synthesizes the common shot gathers and seismograms and reconstructs the traces that were erased from the initial section using the explicit fractal interpolation method. In order to compare the differences between the theoretical traces that were erased in the initial section and the resulting traces after reconstruction on waveform and amplitudes quantitatively, each missing traces are reconstructed and the residuals are analyzed. The numerical experiments demonstrate that the novel fractal interpolation method is not only applicable to reconstruct the seismograms with small offset but to the seismograms with large offset. The seismograms reconstructed by explicit fractal interpolation method resemble the original ones well. The waveform of the missing traces could be estimated very well and also the amplitudes of the interpolated traces are a good approximation of the original ones. The high precision and computational efficiency of the explicit fractal interpolation make it a useful tool to reconstruct the seismic data; it can not only make the local information obvious but preserve the overall characteristics of the object investigated. To illustrate the influence of the explicit fractal interpolation method to the accuracy of the imaging of the structure in the earth’s interior, this dissertation applies the method mentioned above to the reverse-time migration. The imaging sections obtained by using the fractal interpolated reflected data resemble the original ones very well. The numerical experiments demonstrate that even with the sparse sampling we can still obtain the high accurate imaging of the earth’s interior’s structure by means of the explicit fractal interpolation method. So we can obtain the imaging results of the earth’s interior with fine quality by using relatively small number of seismic stations. With the fractal interpolation method we will improve the efficiency and the accuracy of the reverse-time migration under economic conditions. To verify the application effect to real data of the method presented in this paper, we tested the method by using the real data provided by the Broadband Seismic Array Laboratory, IGGCAS. The results demonstrate that the accuracy of explicit fractal interpolation is still very high even with the real data with large epicenter and large offset. The amplitudes and the phase of the reconstructed station data resemble the original ones that were erased in the initial section very well. Altogether, the novel fractal interpolation function provides a new and useful tool to reconstruct the seismic data with high precision and efficiency, and presents an alternative to image the deep structure of the earth accurately.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the prediction of complex reservoir with high heterogeneities in lithologic and petrophysical properties, because of inexact data (e.g., information-overlapping, information-incomplete, and noise-contaminated) and ambiguous physical relationship, inversion results suffer from non-uniqueness, instability and uncertainty. Thus, the reservoir prediction technologies based on the linear assumptions are unsuited for these complex areas. Based on the limitations of conventional technologies, the thesis conducts a series of researches on various kernel problems such as inversions from band-limited seismic data, inversion resolution, inversion stability, and ambiguous physical relationship. The thesis combines deterministic, statistical and nonlinear theories of geophysics, and integrates geological information, rock physics, well data and seismic data to predict lithologic and petrophysical parameters. The joint inversion technology is suited for the areas with complex depositional environment and complex rock-physical relationship. Combining nonlinear multistage Robinson seismic convolution model with unconventional Caianiello neural network, the thesis implements the unification of the deterministic and statistical inversion. Through Robinson seismic convolution model and nonlinear self-affine transform, the deterministic inversion is implemented by establishing a deterministic relationship between seismic impedance and seismic responses. So, this can ensure inversion reliability. Furthermore, through multistage seismic wavelet (MSW)/seismic inverse wavelet (MSIW) and Caianiello neural network, the statistical inversion is implemented by establishing a statistical relationship between seismic impedance and seismic responses. Thus, this can ensure the anti-noise ability. In this thesis, direct and indirect inversion modes are alternately used to estimate and revise the impedance value. Direct inversion result is used as the initial value of indirect inversion and finally high-resolution impedance profile is achieved by indirect inversion. This largely enhances inversion precision. In the thesis, a nonlinear rock physics convolution model is adopted to establish a relationship between impedance and porosity/clay-content. Through multistage decomposition and bidirectional edge wavelet detection, it can depict more complex rock physical relationship. Moreover, it uses the Caianiello neural network to implement the combination of deterministic inversion, statistical inversion and nonlinear theory. Last, by combined applications of direct inversion based on vertical edge detection wavelet and indirect inversion based on lateral edge detection wavelet, it implements the integrative application of geological information, well data and seismic impedance for estimation of high-resolution petrophysical parameters (porosity/clay-content). These inversion results can be used to reservoir prediction and characterization. Multi-well constrains and separate-frequency inversion modes are adopted in the thesis. The analyses of these sections of lithologic and petrophysical properties show that the low-frequency sections reflect the macro structure of the strata, while the middle/high-frequency sections reflect the detailed structure of the strata. Therefore, the high-resolution sections can be used to recognize the boundary of sand body and to predict the hydrocarbon zones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reflectivity sequences extraction is a key part of impedance inversion in seismic exploration. Although many valid inversion methods exist, with crosswell seismic data, the frequency brand of seismic data can not be broadened to satisfy the practical need. It is an urgent problem to be solved. Pre-stack depth migration which developed in these years becomes more and more robust in the exploration. It is a powerful technology of imaging to the geological object with complex structure and its final result is reflectivity imaging. Based on the reflectivity imaging of crosswell seismic data and wave equation, this paper completed such works as follows: Completes the workflow of blind deconvolution, Cauchy criteria is used to regulate the inversion(sparse inversion). Also the precondition conjugate gradient(PCG) based on Krylov subspace is combined with to decrease the computation, improves the speed, and the transition matrix is not necessary anymore be positive and symmetric. This method is used to the high frequency recovery of crosswell seismic section and the result is satisfactory. Application of rotation transform and viterbi algorithm in the preprocess of equation prestack depth migration. In equation prestack depth migration, the grid of seismic dataset is required to be regular. Due to the influence of complex terrain and fold, the acquisition geometry sometimes becomes irregular. At the same time, to avoid the aliasing produced by the sparse sample along the on-line, interpolation should be done between tracks. In this paper, I use the rotation transform to make on-line run parallel with the coordinate, and also use the viterbi algorithm to complete the automatic picking of events, the result is satisfactory. 1. Imaging is a key part of pre-stack depth migration besides extrapolation. Imaging condition can influence the final result of reflectivity sequences imaging greatly however accurate the extrapolation operator is. The author does migration of Marmousi under different imaging conditions. And analyzes these methods according to the results. The results of computation show that imaging condition which stabilize source wave field and the least-squares estimation imaging condition in this paper are better than the conventional correlation imaging condition. The traditional pattern of "distributed computing and mass decision" is wisely adopted in the field of seismic data processing and becoming an obstacle of the promoting of the enterprise management level. Thus at the end of this paper, a systemic solution scheme, which employs the mode of "distributed computing - centralized storage - instant release", is brought forward, based on the combination of C/S and B/S release models. The architecture of the solution, the corresponding web technology and the client software are introduced. The application shows that the validity of this scheme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

锑(antimony,Sb)是一种典型的毒害重金属元素。我国作为世界上最主要的锑生产国,有关锑的表生地球化学及锑污染防治研究还很薄弱。贵州省位于我国西南低温成矿域中心,具有高Sb地球化学背景值,是我国重要的锑工业基地,境内分布着大量Sb矿床,锑矿储量居全国第四位。贵州又地处我国西南喀斯特中心区域,岩溶地貌极其发育,生态环境脆弱。由于大规模锑矿资源的开采利用,锑矿区土壤和水体中Sb污染十分突出,并通过水体或食物链对矿区及流域居民健康形成潜在威胁。因此,研究矿山环境中Sb的表生地球化学对于认识Sb污染的环境效应和寻求Sb污染修复方式具有至关重要的意义。 本文以贵州半坡大型锑矿区为研究对象,系统研究了Sb在矿区岩石、固体废弃物、土壤、水体和植物体等表生环境介质中的分布、迁移、富集规律与赋存机制,阐明了矿区Sb的表生地球化学过程规律,评价了矿区围岩、(废)矿石和尾矿砂等样品的产酸潜力,筛选出新的锑潜在超富集植物和超耐受性植物,并获得以下主要认识: (1) 独山半坡锑矿区是典型高锑地质地球化学背景区,不仅矿石中Sb含量很高,而且围岩中Sb含量也远高于上地壳Sb的平均含量。辉锑矿是锑的主要载体和释放源。 (2) 在固体废弃物中,冶炼废渣中Sb含量最高,其次为废石堆和尾砂库。废石中元素特征基本与围岩一致,继承了围岩的元素特征,而尾矿砂由于破碎、浮选过程的改造,其元素含量特征与围岩存在差异。尾砂砂中Sb以中层最富,底层和表层依次降低,与Fe、Al矿物的分布特征相似,这种分布模式主要受氧化还原条件、雨水淋滤、Fe/Al矿物吸附机制等因素控制。尾矿砂中不同相态的锑含量依次为残渣态>碳酸盐结合态>有机物结合态>可交换态>铁锰氧化物结合态,其中生物易利用态Sb的空间分布特征与总Sb分布特征一致。 (3) 所有的(废)矿石样品都具有潜在产酸能力,需要采取必要的措施抑制酸性矿山排水的产生。尾矿砂没有产酸潜力,这与矿石在选冶过程中加入石灰处理和S含量过低等原因有关,这种碱性环境可能有利于锑的表生地球化学活化和迁移。 (4) 研究区土壤受到严重锑污染,土壤中Sb含量高达51~7369 mg/kg,且随深度增加而逐渐降低,底层含量与对照区相近。这种高含量的Sb可能是与锑矿化有关的裸露岩石和土壤的自然风化淋滤过程和采矿、冶炼活动等造成的。研究区土壤中不同相态的Sb含量依次为残渣态>铁/锰氧化物结合态>碳酸盐结合态>有机物/硫化物结合态>可交换态。土壤中Sb的生物有效性很低。土壤中Sb的迁移与As密切相关。 (5) 研究区水体为SO4/HCO3-Ca型,水体中的Sb以溶解态、悬浮态和沉积物形式存在,并通过吸附-解吸附和水流推移方式进行迁移。洪水期和枯水期水体中Sb的扩散迁移机制存在差异,洪水期研究区内水体对岔河下游水体污染危害更大。在枯水期,岔河水体中溶解态Sb含量和沉积物中Sb含量存在显著正相关关系,表明枯水期沉积物和水体界面间达到物质交换平衡。水体的氧化还原条件和pH值控制着水体中Sb的存在形态。沉积物中不同相态Sb含量依次为残渣态>碳酸盐结合态,铁锰氧化物结合态>可交换态,有机物/硫化物结合态。研究区水体中Sb主要受矿区采矿、选冶活动的强烈影响。水体中硫同位素示踪研究发现,岔河下游水体中59%的S来自于矿山硫源的贡献,表明矿山活动严重影响到岔河下游水体水质。 (6) 植物对土壤中Sb的吸收与植物部位和种类有关。大体上地下部分>地上部分,且根>叶片>茎。在农作物中,白菜>甘蓝>辣椒和稻谷。研究发现,土荆芥(Chenopodium ambrosioides Linn.)是新的Sb潜在超富集植物,鬼针草(Bidens pilosa Linn.)、一年蓬(Erigeron annuus (Linn.) Pers.)、佛甲草(Sedum lineare Thun)、凹叶景天(Sedum emarginatum Migo)、灰灰菜(Chenopodium album Linn.)和鼠麹草(Gnaphalium affine D. Don)也能大量富集Sb,并有很强耐受性。 (7) 研究区这种特殊的高Sb地质环境和人为活动的影响,导致表生环境中Sb的高度富集,造成农作物、水体中Sb含量极高,通过食物链和水体严重影响当地居民的身体健康。