基于仿射不变特征的图像匹配


Autoria(s): 黄杰华
Data(s)

04/06/2008

Resumo

图像匹配是计算机视觉中的一个重要研究领域,无论在民用还是军用上都有着重要的应用价值。本文以研究室国防重点预研究项目自动目标识别为背景,采用图像匹配方法,实现飞行器定位导航。具体工作流程是:事先利用侦察手段获取飞行器途经下方的地物景象(基准图)并存于飞行器载计算机中,然后当携带相应传感器的飞行器飞过预定的位置范围时,拍摄当地的地物景象(实时图),将实时图和基准图在飞行器载计算机中进行匹配比较,可确定当前飞行器的准确位置,完成定位导航功能。 由于对同一场景使用相同或不同的传感器(成像设备),以及在不同条件下(天候、照度、摄像位置和角度等)成像的复杂性和多样性等困难的存在,传统的相关匹配方法对上述困难的克服在方法原理上存在先天不足,所以无法胜任。故本文采用的方法是基于局部不变量特征的图像匹配。局部不变量特征因为能更灵活地描述图像,有效地处理图像复杂和遮挡问题,所以基于局部不变量特征的图像匹配方法对于视点的大变化,图像背景变化,以及目标场景识别等都有较好的效果。 基于局部不变量特征的图像匹配方法的步骤通常分为三部分:(1)用图像区域检测算子提取图像相关区域,(2)构造合适的特征描述区域,(3)选择特征相似度度量准则实现图像区域特征的匹配。本文详细研究了最大稳定极值区域 (MSER)方法,在此基础上进行了改进,具体工作如下:(1)利用高斯核函数对图像平滑采样,建立图像的高斯尺度空间,(2)在图像的高斯尺度空间中,利用MSER检测算子检测出图像在不同尺度下的所有仿射相关区域,(3)由于区域不规则,再用仿射不变的椭圆拟合并归一化,这时所有的区域仅存在旋转的不同,(4)用SIFT特征描述图像区域,得到所有区域的128维特征向量集。(5)采用欧式距离度量特征间的相似度,以最近邻和次近邻的比值作为特征匹配准则进行匹配。 本论文的主要研究工作在于把图像的高斯尺度空间引入到MSER算法中,进而大大改善了MSER算法对于图像的尺度变换、仿射变换以及图像模糊的性能。由于建立了高斯尺度空间,增加了MSER检测算子检测的范围,所以使得改进算法的性能得到了改善。论文第四章给出四组实验,分别为尺度变换,仿射变换,图像模糊和大视点变换。最后通过对匹配结果正确数量和错误数量的统计,论证了改进方法的性能要好于MSER算法。通过对算法复杂度的分析,得出虽然在改进算法引入了图像的高斯尺度空间,但是算法复杂度却并未增加,与MSER算法相同,为O(nloglogn)。

Identificador

http://ir.sia.ac.cn/handle/173321/452

http://www.irgrid.ac.cn/handle/1471x/170129

Idioma(s)

中文

Fonte

基于仿射不变特征的图像匹配.黄杰华[d].中国科学院沈阳自动化研究所,2008.20-25

Palavras-Chave #最大稳定极值区域(MSER) #尺度不变特征变换(SIFT) #尺度不变 #仿射不变
Tipo

学位论文