57 resultados para Wheel-railhead Contact
Resumo:
A Talbot scanning near-field optical microscopy (SNOM) method for non-contact evaluating of high-density gratings was described. This method combines the Talbot self-imaging effect of the gratings and the conventional SNOM technique without damage. The significant advantages of this method are its simple structure, reliable and fast measurement for the surface quality of the tested gratings. Experimental results of three different kinds of gratings were demonstrated to indicate that this method is effective for evaluation surface quality of high-density gratings. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
A metallization scheme of Ni/Ag/Ti/Au has been developed for obtaining high reflective contacts on p-type GaN. In order to find optimal conditions to get a high reflectivity, we studied samples with various Ni thicknesses, annealing temperatures and annealing times. By annealing at 500 degrees C for 5 min in an O-2 ambient, a reflectivity as high as 94% was obtained from Ni/Ag/Ti/Au (1/120/120/50 nm). The effects of Ti layers on the suppression of Ag agglomeration were investigated by using Auger electron spectroscopy (AES). From AES depth profiles, it is clear that Ti acts as a diffusion barrier to prevent Au atoms from diffusing into the Ag layer, which is important in the formation of high reflectivity.
Resumo:
Ir and Ni Schottky contacts on strained Al0.25Ga0.75N/GaN heterostructures, and the Ni Schottky contact with different areas on strained Al0.3Ga0.7N/GaN heterostructures have been prepared. Using the measured capacitance-voltage curves and the current-voltage curves obtained from the prepared Schottky contacts, the polarization charge densities of the AlGaN barrier layer for the Schottky contacts were analyzed and calculated by self-consistently solving Schrodinger's and Poisson's equations. It is found that the polarization charge density of the AlGaN barrier layer for the Ir Schottky contact on strained Al0.25Ga0.75N/GaN heterostructures is different from that of the Ni Schottky contact, and the polarization charge densities of the AlGaN barrier layer for Ni Schottky contacts with different areas on strained Al0.3Ga0.7N/GaN heterostructures are different corresponding to different Ni Schottky contact areas. As a result, the conclusion can be made that Schottky contact metals on strained AlGaN/GaN heterostructures have an influence on the strain of the AlGaN barrier layer. (C) 2008 American Institute of Physics.
Resumo:
For a second-order DFB-LD, the presence of a metal contact layer can reduce I-st-order radiation. Part of the reflected power is redistributed into guided modes and results in a variation of the effective coupling coefficient kappa(eff). In this paper, we study the effect of the Au top contact's reflection on the kappa(eff) of 2(nd)-order DFB lasers. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Properties of the Ag/Ni/p-GaN structure at different temperatures are studied by Auger electron spectroscopy, scanning electron microscopy and high resolution x-ray diffraction. The effect of Ag in ohmic contact on the crystalline quality is investigated and the optimized value of annealing temperature is reported. The lowest specific contact resistance of 2.5 x 10(-4) Omega cm(2) is obtained at annealing temperature of 550 degrees C.
Resumo:
Closely related to the quantum information processing in solid states, we study the quantum measurement of single electron state by a mesoscopic charge-sensitive detector, namely the quantum point contact (QPC). We find that the conventional Lindblad-type master equation is not appropriate for describing the underlying measurement dynamics. The treatment developed in this work properly accounts for the energy-exchange between the detector and the measured system, and its role on the detailed-balance relation. A valid description for the QPC measurement dynamics is provided which may have impact on the study of quantum measurement and quantum feedback control in solid states.
Resumo:
As a solution of accurate simulation of the body effect in PD SOI analogue circuit, a simulation model of distributed body contact resistance and parasitical capacitance is presented. Based on this model, we have designed and simulated a sense amplifier that applied to V a 0.8um PD SOI 64K SRAM.
Resumo:
A convenient fabrication technology for large-area, highly-ordered nanoelectrode arrays on silicon substrate has been described here, using porous anodic alumina (PAA) as a template. The ultrathin PAA membranes were anodic oxidized utilizing a two-step anodization method, from Al film evaporated on substrate. The purposes for the use of two-step anodization were, first, improving the regularity of the porous structures, and second reducing the thickness of the membranes to 100 similar to 200 nm we desired. Then the nanoelectrode arrays were obtained by electroless depositing Ni-W alloy into the through pores of PAA membranes, making the alloy isolated by the insulating pore walls and contacting with the silicon substrates at the bottoms of pores. The Ni-W alloy was also electroless deposited at the back surface of silicon to form back electrode. Then ohmic contact properties between silicon and Ni-W alloy were investigated after rapid thermal annealing. Scanning electron microscopy (SEM) observations showed the structure characteristics, and the influence factors of fabrication effect were discussed. The current voltage (I-V) curves revealed the contact properties. After annealing in N-2 at 700 degrees C, good linear property was shown with contact resistance of 33 Omega, which confirmed ohmic contacts between silicon and electrodes. These results presented significant application potential of this technology in nanosize current-injection devices in optoelectronics, microelectronics and bio-medical fields.
Resumo:
The sidegating effect on the Schottky barrier in ion-implanted GaAs was investigated with capacitance-voltage profiling at various negative substrate voltages. It was demonstrated that the negative substrate voltage modulates the Schottky depletion region width as well as the space charge region at the substrate-active channel interface. (C) 1995 American Institute of Physics.
Resumo:
The differences between the interdiffusion characteristics of Ag/YBa2Cu3O7-x and Al/YBa2Cu3O7-x contact interfaces have been revealed by secondary ion mass spectrometry (SIMS). The different electrical properties of Ag/YBa2Cu3O7-x and YBa2Cu3O7-x films after high temperature treatment are well understood by the SIMS results.
Resumo:
The influence of annealed ohmic contact metals on the electron mobility of a two dimensional electron gas (2DEG) is investigated on ungated AlGaN/GaN heterostructures and AlGaN/GaN heterostructure field effect transistors (AlGaN/GaN HFETs). Current-voltage (I-V) characteristics for ungated AlGaN/GaN heterostructures and capacitance-voltage (C-V) characteristics for AlGaN/GaN HFETs are obtained, and the electron mobility for the ungated AlGaN/GaN heterostructure is calculated. It is found that the electron mobility of the 2DEG for the ungated AlGaN/GaN heterostructure is decreased by more than 50% compared with the electron mobility of Hall measurements. We propose that defects are introduced into the AlGaN barrier layer and the strain of the AlGaN barrier layer is changed during the annealing process of the source and drain, causing the decrease in the electron mobility.
Resumo:
The Ni/Au contact was treated with oxalic acid after annealing in O_2 ambient, and its I-V characteristic showed the property of contact has been obviously improved. An Auger electron spectroscopy (AES) depth pro-file of the contact as-annealed showed that the top layer was highly resistive NiO, while an X-ray photo-electron spectroscopy (XPS) of oxalic acid treated samples indicated that the NiO has been removed effectively. A scanning electron microscope (SEM) was used to observe the surface morphology of the contacts, and it was found that the lacunaris surface right after annealing became quite smooth with lots of small Au exposed areas after oxalic acid treatment. When the test probe or the subsequently deposited Ti/Au was directly in contact with these small Au areas, they worked as low resistive current paths and thus decrease the specific contact resistance.
Resumo:
An augmented immersed interface method (IIM) is proposed for simulating one-phase moving contact line problems in which a liquid drop spreads or recoils on a solid substrate. While the present two-dimensional mathematical model is a free boundary problem, in our new numerical method, the fluid domain enclosed by the free boundary is embedded into a rectangular one so that the problem can be solved by a regular Cartesian grid method. We introduce an augmented variable along the free boundary so that the stress balancing boundary condition is satisfied. A hybrid time discretization is used in the projection method for better stability. The resultant Helmholtz/Poisson equations with interfaces then are solved by the IIM in an efficient way. Several numerical tests including an accuracy check, and the spreading and recoiling processes of a liquid drop are presented in detail. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper the influence of contact geometry, including the round tip of the indenter and the roughness of the specimen, on hardness behavior for elastic plastic materials is studied by means of finite element simulation. We idealize the actual indenter by an equivalent rigid conic indenter fitted smoothly with a spherical tip and examine the interaction of this indenter with both a flat surface and a rough surface. In the latter case the rough surface is represented by either a single spherical asperity or a dent (cavity). Indented solids include elastic perfectly plastic materials and strain hardening elastic-plastic materials, and the effects of the yield stress and strain hardening index are explored. Our results show that due to the finite curvature of the indenter tip the hardness versus indentation depth curve rises or drops (depending on the material properties of the indented solids) as the indentation depth decreases, in qualitative agreement with experimental results. Surface asperities and dents of curvature comparable to that of the indenter tip can appreciably modify the hardness value at small indentation depth. Their effects would appear as random variation in hardness.