44 resultados para Visual Attention
Resumo:
The color change induced by triple hydrogen-bonding recognition between melamine and a cyanuric acid derivative grafted on the surface of gold nanoparticles can be used for reliable detection of melamine. Since such a color change can be readily seen by the naked eye, the method enables on-site and real-time detection of melamine in raw milk and infant formula even at a concentration as low as 2.5 ppb without the aid of any advanced instruments.
Resumo:
Among the functional nucleic acids studied, adenine-rich nucleic acids have attracted attention due to their critical roles in many biological processes and self-assembly-based nanomaterials, especially deoxyribonucleic acids (abbreviated as poly(dA)). Therefore the ligands binding to poly(dA) might serve as potential therapeutic agents. Coralyne, a kind of planar alkaloid, has been firstly found that it could bind strongly to poly(dA). This work herein reports an approach for visual sensing of the coralyne-poly(dA) interaction. This method was based on the coralyne inducing poly(dA) into the homo-adenine DNA duplex and the difference in electrostatic affinity between single-stranded DNA and double-stranded DNA with gold nanoparticles (GNPs). Furthermore, we applied the recognition process of the interaction between coralyne and poly(dA) into specific coralyne detection with the assistance of certain software (such as Photoshop). A linear response from 0 to 728 nM was obtained for coralyne, and a detection limit of 91 nM was achieved.
Resumo:
目前,利用单根碳纳米管进行纳电子器件的研制成为纳电子学界研究的前沿与热点,但在纳电子器件研制过程中,如何实现单根碳纳米管与微电极的精确装配与电连接成为关键技术难题之一。为探索实现此关键技术的新方法,本文尝试将介电电泳与具有实时力/视觉反馈的原子力显微镜操作方法相结合,从而结合粗、精两级操作方式,来实现单根碳纳米管的精确装配与电连接。单根多壁碳纳米管的精确装配与电特性测试实验验证了该方法的有效性,从而为装配研制基于单根纳米管/线的纳电子器件提供了一种新颖可行的方法。
Resumo:
Population research is a front area concerned by domestic and overseas, especially its researches on its spatial visualization and its geo-visualization system design, which provides a sound base for understanding and analysis of the regional difference in population distribution and its spatial rules. With the development of GIS, the theory of geo-visualization more and more plays an important role in many research fields, especially in population information visualization, and has been made the big achievements recently. Nevertheless, the current research is less attention paid to the system design for statistical-geo visualization for population information. This paper tries to explore the design theories and methodologies for statistical-geo-visualization system for population information. The researches are mainly focused on the framework, the methodologies and techniques for the system design and construction. The purpose of the research is developed a platform for population atlas by the integration of the former owned copy software of the research group in statistical mapping system. As a modern tool, the system will provide a spatial visual environment for user to analyze the characteristics of population distribution and differentiate the interrelations of the population components. Firstly, the paper discusses the essentiality of geo-visualization for population information and brings forward the key issue in statistical-geo visualization system design based on the analysis of inland and international trends. Secondly, the geo-visualization system for population design, including its structure, functionality, module, user interface design, is studied based on the concepts of theory and technology of geo-visualization. The system design is proposed and further divided into three parts: support layer, technical layer, user layer. The support layer is a basic operation module and main part of the system. The technical layer is a core part of the system, supported by database and function modules. The database module mainly include the integrated population database (comprises spatial data, attribute data and geographical features information), the cartographic symbol library, the color library, the statistical analysis model. The function module of the system consists of thematic map maker component, statistical graph maker component, database management component and statistical analysis component. The user layer is an integrated platform, which provides the functions to design and implement a visual interface for user to query, analysis and management the statistic data and the electronic map. Based on the above, China's E-atlas for population was designed and developed by the integration of the national fifth census data with 1:400 million scaled spatial data. The atlas illustrates the actual development level of the population nowadays in China by about 200 thematic maps relating with 10 map categories(environment, population distribution, sex and age, immigration, nation, family and marriage, birth, education, employment, house). As a scientific reference tool, China's E-atlas for population has already received the high evaluation after published in early 2005. Finally, the paper makes the deep analysis of the sex ratio in China, to show how to use the functions of the system to analyze the specific population problem and how to make the data mining. The analysis results showed that: 1. The sex ratio has been increased in many regions after fourth census in 1990 except the cities in the east region, and the high sex ratio is highly located in hilly and low mountain areas where with the high illiteracy rate and the high poor rate; 2. The statistical-geo visualization system is a powerful tool to handle population information, which can be used to reflect the regional differences and the regional variations of population in China and indicate the interrelations of the population with other environment factors. Although the author tries to bring up a integrate design frame of the statistical-geo visualization system, there are still many problems needed to be resolved with the development of geo-visualization studies.
Resumo:
There is extensive agreement that attention may play a role in spatial stimmlus coding (Lu & Proctor, 1995). Some authors investigated the effects of spatial attention on the spatial coding by using spatial cueing procedure and spatial Stroop task. The finding was that the stroop effects were modulated by spatial cueing. Three hypotheses including attentional shift account, referential coding account, and event integration account were used to explain the modulation of spatial cueing over the spatial Stroop effects. In these previous studies, on validly cued trials, cue and target not only appeared at the same location, but also in the same object, which resulted in both location and object cued. Consequently, the modulation of spatial attentional cueing over spatial Stroop effects was confounded with the role of object-based attention. In the third chapter of this dissertation, using a modification of double rectangles cueing procedure developed by Egly, Driver and Rafal (1994) and spatial Stroop task employed by Lupiáñez and Funes (2005), separate effects of spatial attention and object-based attention on the location code of visual stimuli were investigated. Across four experiments, the combined results showed that spatial Stroop effects were modulate by object-based attention, but not by location-based attention. This pattern of results could be well explained by event integration account, but not by attentional shift account and referential coding account. In the fourth chapter, on the basis of the prior chapter, whether the modulation of attentional cueing on location code occurred at the stage of perceptual identification or response choice was investigated. The findings were that object-based attention modulated spatial Stroop effects and did not modulate the Simon effects, whereas spatial attention did not modulate Stroop and Simon effects. This pattern of results partially replicated the outcome of the previous chapter. The previous studies generally argued that the conflicts of spatial Stroop task and Simon task respectively occurred at at the stage of perceptual identification and response choice. Therefore, it is likely to conclude that the modulation of attention over spatial Stroop effect was mediated by object-based attention, and this modulation occurred at the stage perceptual identification. Considering that the previous studies mostly investigated the effects of attention captured by abrupt onset on the spatial Stroop effects, few studies investigated the effects of attention captured by offset cue on the spatial Stroop effects. The aim of the fifth chapter was to investigate the role of attention induced by offset and abrupt onset cue in the spatial Stroop task. These results showed that attention elicited by offset cue or abrupt onset cue modulated the spatial Stroop effects, which reconciled with event integration account.
Resumo:
Theories of Visual search generally differentiate between bottom-up control and top-down control. Bottom-up control occurs when visual selection is determined by the stimulus properties in the search field. Top-down control takes place when observers are able to select those stimuli that are in line with their attentional sets. Pure stimulus-driven capture and contingent capture are two main theories on attentional capture by now, in which, theory of pure capture more emphasize bottom-up control, while theory of contingent capture more emphasize top-down control. Besides those two theories, Perceptual load theory of attention provides completely new perspective to explain attentional capture. The aim of this study is to investigate the mechanism of attentional capture in visual search on the basis of the existing theory of attentional capture and Perceptual load theory of attention. Three aspects of questions were explored in this study, which includes: the modulation role of perceptual load on attentional capture; the influence of search mode on attentional capture; and the influence of stimuli’s spatial and temporal characteristics on attentional capture. The results showed that: (1) Attentional capture was modulated by perceptual load in both conditions in which perceptual load manipulated either by amount of stimuli or similarity of stimuli. (2) Search mode did influence attentional capture, but more important, which was also modulated by perceptual load. (3) The spatial characteristics of congruent and incongruent distractor did influence attentional capture, specifically, the further the distractor from the target, the more interference effect the distractor had on visual search. (4) The temporal characteristics of distractor did influence attentional capture, specifically, the pattern of results from the study in which distractor were presented after the search display, were similar to those from the study in which distractors were presented before the search display. In sum, the results indicated that attentional capture are controlled not only by bottom-up factors, top-down factors but also modulated by available attention resources. These findings contribute to resolve the controversy for mechanism of attentional capture. And the potential application of this research was discussed.
Resumo:
As a species of internal representation, how is mental imagery organized in the brain? There are two issues related to this question: the time course and the nature of mental imagery. On the nature of mental imagery, today's imagery debate is influenced by two opposing theories: (1) Pylyshyn’s propositional theory and (2) Kosslyn’s depictive representation theory. Behavioural studies indicated that imagery encodes properties of the physical world, such as the spacial and size information of the visual world. Neuroimaging and neuropsychological data indicated that sensory cortex; especially the primary sensory cortex, is involved in imagery. In visual modality, neuroimaging data further indicated that during visual imagery, spatial information is mapped in the primary visual, providing strong evidences for depictive theory. In the auditory modality, behavioural studies also indicated that auditory imagery represents loudness and pitch of sound; this kind of neuroimaging evidence, however, is absent. The aim of the present study was to investigate the time course of auditory imagery processing, and to provide the neuroimaging evidence that imaginal auditory representations encode loudness and pitch information, using the ERP method and a cue-imagery (S1)-S2 paradigm. The results revealed that imagery effects started with an enhancement of the P2, probably indexing the top-down allocation of attention to the imagery task; and continued into a more positive-going late positive potentials (LPC), probably reflecting the formation of auditory imagery. The amplitude of this LPC was inversely related to the pitch of the imagined sound, but directly related to the loudness of the imagined sound, which were consistent with auditory perception related N1 component, providing evidences that auditory imagery encodes pitch and loudness information. When the S2 showed difference in pitch of loudness from the previously imagined S1, the behavioral performance were significantly worse and accordingly a conflict related N2 was elicited; and the high conflict elicited greater N2 amplitude than low conflict condition, providing further evidences that imagery is analog of perception and can encode pitch and loudness information. The present study suggests that imagery starts with an mechanism of top-down allocation of attention to the imagery task; and continuing into the step of imagery formation during which the physical features of the imagined stimulus can be encoded, providing supports to Kosslyn’s depictive representation theory.
Resumo:
In the present study, based on processing efficiency theory, we used the event-related potentials (ERP) and functional magnetic resonance image (fMRI) techniques to explore the underlying neutral mechanism of influences of negative emotion on three subsystems of working memory, phonological loop、 visuospatial sketh pad and the central executive. The modified DSMT (delayed matching-to-sample task) and n-back tasks were adopted and IAPS (International Affective Picture System) pictures were employed to induce the expected emotional state of subjects. The main results and conclusions obtained in the series of experiments are as the following: 1. In DSM tasks, we found P200 and P300 were reduced by negative emotion in both spatial and verbal tasks, however the increased negative slow wave were only observed in spatial tasks, not in verbal tasks. 2. In n-back tasks, the updating function of WM associated P300 was affected by negative emotion only in spatial tasks, not in verbal tasks. Current density analysis revealed strong current density in the fronto-parietal cortex only in the spatial tasks as well. 3. We adopted fMRI-block design and ROIs analysis, and found significant emotion and task effects in spatial WM-associated right superior parietal cortex; only emotion effect in verbal WM-associated Broca’s area; the interaction effect in attention-associated medial prefrontal area and bilateral inferior parietal cortex. These results implied the negative emotion mainly disturbed the spatial WM-related areas, and the attention control system play a key role in the interaction of spatial WM and negative emotion. 4. to further examine the effects of positive、negative and neutral emotion on tasks with different cognitive loads, the selective effect of emotion on the ERP components of spatial WM was only found in 2-back tasks, not in visual searching tasks. So, firstly the positive emotion as well as negative emotion selectively disturbed on spatial WM in light of the attention resource competition mechanism. Secondly, the selective influences based on the different WM systems, not the properties of spatial and verbal information. At last, the manner of the interaction of emotion and cognition is correlated with the cognitive load.
Resumo:
Human being’s visual attentional system is the direct results of millions of years of evolutionary selection. As an adaptation to the environment, the most prominent function of attentional system is to facilitate the effective selection and subsequent processing of the most critical information and events from the environment with the aim of enhancing a given individual’s chance of passing his/her gene to the next generation. In the living environment of ancestral human beings, animals were undoubtedly one of those stimulus categories of great evolutionary significance. Since the process of animal-related information had life-or-death consequences for ancestral human beings, some researchers proposed a so-called animate monitoring hypothesis which states that there exists a category-specific module in the attentional system of human beings which specializes in the detection and frequent re-inspection of animal stimuli. Drawing on the available findings and theories regarding the inhibition-of-return effect, the present study utilized several variants of the spatial cueing paradigm to test the two main predictions of animate monitoring hypothesis:(1) animal stimuli in the environment are capable of summon attention in a reflexive way; (2) the inhibitory effect of attentional process on animal stimuli is less pronounced when compared to stimuli of other categories. The results of the present study provide supportive evidence to the existence of a category-specific module for animals in the attentional system. The present study contributes to the further understanding of the important role played by attentional mechanism in solving the critical adaptive problem faced by ancestral human beings during the course of evolution.
Resumo:
The present cross-sectional study paid attention to Chinese reading acquisition of 391 children from preschool to grade 3 in two elementary schools, and investigated the relationship between orthographic processing skills, morphological awareness, phonological awareness, naming, phonological memory, visual processing skill and reading skills, after controlling the variance of age, nonverbal intelligence and pinyin knowledge. The main results are as follows: Firstly, there are many different language skills as the predictors of Chinese reading success. Orthographic processing skills, morphological awareness, phonological awareness and naming are important in single-character recognition and comprehension. Beside them, the effect of visual processing skill and phonological memory for comprehension are also significant. Among them, the role of orthographic processing skills is the most important, whatever in single-character recognition or in comprehension. Secondly, orthographic processing skills are the most important factors in reading acquisition at low grade and its effect drops obviously after grade 2. Thirdly, morphological awareness is also the factor that cannot be ignored whatever for single-character recognition or for comprehension. Its influence appears in preschool and becomes the only significant predictor of character recognition in grade 3. Furthermore, morphological awareness is more relevant with the development of comprehension. Fourthly, phonological awareness plays the secondary role in Chinese reading acquisition except in grade 2 when its contribution is most of all. And compare with morphological awareness, the effect of phonological awareness is relative low. Fifthly, naming is important through preschool to grade 2. The contribution of phonological memory increases from preschool to grade 3 in comprehension.
Resumo:
A dual task paradigm which consisted of RSVP task and orthogonal spatial cuing task was adopted to study the effects of perceptual load and cue modality on attention capture. This dual task paradigm was modified from Santangelo’s tasks in which only the high load condition used the dual task. Experiment 1 found that in the low perceptual load condition, the visual cues showed advantage in capturing attention compared with the audiovisual ones. While in the high perceptual load condition, the audiovisual cues were better to capture attention. SOA was introduced into Experiment 2, 3 and 4 in order to help clarify the relationship among perceptual load, cuing modality and attention capture. The low load visual cuing task testified the period time course characteristics in attention capture which was found by Liang et.al. Differing from Liang’s conclusion that attention capture occurred at 333ms, attention capture occurred at 50ms here which might be caused by the different paradigms used. Moreover, the similar period time course was found in high load audiovisual cuing task when SOA equaled 50ms. And no such period time course characteristics were found neither in the high load visual cuing task nor the low load audiovisual cuing task. These results found the period time course characteristics in attention capture. And it was suggested that these characteristics were influenced by perceptual load and cuing modality.
Resumo:
In the history of psychology research, more attention had been focused on the relation between local processing and global processing. For the global information and the local information, which is processed earlier? And which is processed faster? Precedence of the global over the local level in visual perception has been well established by Navon with compound stimuli, and Navon’s original study gave rise to many publications, including replications, generalization to other kinds of stimuli (nonverbal material, digits), populations (infants, children, brain-damaged subjects), and tasks (lateral visual hemifield presentation, copy drawing, memory recognition, and recall), and triggered some debate about the conditions in which global precedence is and is not observed (number, size, sparsity, and goodness of the stimuli, exposure duration, etc.). However, whether there is a global advantage or precedence in other cognitive processes was less tested. Most researches had suggested that there was a functional equivalency between visual perception and visual image processing. However, it’s still unknown whether there will be a global advantage on mental rotation. In the present study, we combined the mental rotation task with the compound stimuli to explore whether the global or local advantage also existed at the mental imagery transformation stages. In two pilot studies, the perceptual global precedence was found to be present in a normal/mirror-image judgment task when the stimuli exposure time was short; while the stimuli exposure time was prolonged (stimuli kept available till subjects’ response) the perceptual global precedence was showed to be eliminated. In all of the subsequent experiments, stimili would be presented till subjects’ response. Then mental rotation was added in normal/mirror-image judgment (some of the stimuli were rotated to certain angles from upright) in normal experiments, experiment 1 and 2 observed a global advantage on mental rotation both with a focused-attention design (Experiment 1) and divided-attention design (Experiment 2). Subjects’ reaction times were increased with rotation angles, and the accuracy was decreased with rotation angles, suggesting that subject need a mental rotation to make a normal/mirror judgment. The most important results were that subjects’ response to global rotation was faster than that to local rotation. The analysis of slope of rotation further indicated that, to some extend, the speed of global rotation was faster than that of local rotation. These results suggest a global advantage on mental rotation. Experiment 3 took advantage of the high temporal resolution of event-related potentials to explore the temporal pattern of global advantage on mental rotation. Event-related potential results indicated the parietal P300 amplitude was inversely related to the character orientation, and the local rotation task delayed the onset of the mental-rotation-related negativity at parietal electrodes. None clear effect was found for occipital N150. All these results suggested that the global rotation was not only processed faster than local rotation, but also occurred earlier than local rotation. Experiments 4 and 5 took the effect size of global advantage as the main dependent variable, and visual angle and exposure duration of the stimuli as independent variables, to examine the relationship between perceptual global precedence and global advantage on mental rotation. Results indicated that visual angle and exposure duration did not influence the effect size of global advantage on mental rotation. The global advantage on mental rotation and the perceptual global advantage seemed to be independent but their effects could be accumulated at some condition. These findings not only contribute to revealing a new processing property of mental rotation, but also deepen our understanding of the problem of global/local processing and shed light on the debate on locus of global precedence.
Resumo:
Crowding, generally defined as the deleterious influence of nearby contours on visual discrimination, is ubiquitous in spatial vision. Specifically, long-range effects of non-overlapping distracters can alter the appearance of an object, making it unrecognizable. Theories in many domains, including vision computation and high-level attention, have been proposed to account for crowding. However, neither compulsory averaging model nor insufficient spatial esolution of attention provides an adequate explanation for crowding. The present study examined the effects of perceptual organization on crowding. We hypothesize that target-distractor segmentation in crowding is analogous to figure-ground segregation in Gestalt. When distractors can be grouped as a whole or when they are similar to each other but different from the target, the target can be distinguished from distractors. However, grouping target and distractors together by Gestalt principles may interfere with target-distractor separation. Six experiments were carried out to assess our theory. In experiments 1, 2, and 3, we manipulated the similarity between target and distractor as well as the configuration of distractors to investigate the effects of stimuli-driven grouping on target-distractor segmentation. In experiments 4, 5, and 6, we focused on the interaction between bottom-up and top-down processes of grouping, and their influences on target-distractor segmentation. Our results demonstrated that: (a) when distractors were similar to each other but different from target, crowding was eased; (b) when distractors formed a subjective contour or were placed regularly, crowding was also reduced; (c) both bottom-up and top-down processes could influence target-distractor grouping, mediating the effects of crowding. These results support our hypothesis that the figure-ground segregation and target-distractor segmentation in crowding may share similar processes. The present study not only provides a novel explanation for crowding, but also examines the processing bottleneck in object recognition. These findings have significant implications on computer vision and interface design as well as on clinical practice in amblyopia and dyslexia.