67 resultados para Underground dwellings


Relevância:

10.00% 10.00%

Publicador:

Resumo:

What geophysical inversion studied includes the common mathematics physical property of inversion and the constitution and appraisal method of solution in geophysics domain, i.e. using observed physical phenomenon from the earth surface to infer space changing and physical property structure of medium within the earth. Seismic inversion is a branch of geophysical inversion. The basic purpose of seismic inversion is to utilizing seismic wave propagating law in the medium underground to infer stratum structure and space distribution of physical property according to data acquisition, processing and interpretation, and then offer the vital foundation for exploratory development. Poststack inversion is convenient and swift, its acoustic impedance inversion product can reflect reservoir interior changing rule to a certain degree, but poststack data lack abundant amplitude and travel time information included in prestack data because of multiple superimpose and weaken the sensitiveness which reflecting reservoir property. Compared with poststack seismic inversion, prestack seismic inversion has better fidelity and more adequate information. Prestack seismic inversion, including waveform inversion, not only suitable for thin strata physical property inversion, it can also inverse reservoir oil-bearing ability. Prestack seismic inversion and prestack elastic impedance inversion maintain avo information, sufficiently applying seismic gathering data with different incident angle, partial angle stack, gradient and intercept seismic data cube. Prestack inversion and poststack inversion technology were studied in this dissertation. A joint inversion method which synthesize prestack elastic wave waveform inversion, prestack elastic impedance inversion and poststack inversion was proposed by making fully use of prestack inversion multiple information and relatively fast and steady characteristic of poststack inversion. Using the proposed method to extract rock physics attribute cube with clear physical significance and reflecting reservoir characterization, such as P-wave and S-wave impedance, P-wave and S-wave velocity, velocity ratio, density, Poisson ratio and Lame’s constant. Regarding loose sand reservoir in lower member of Minghuazhen formation, 32-6 south districts in Qinhuangdao,as the research object, be aimed at the different between shallow layer loose sand and deep layer tight sand, first of all, acquire physical property parameters suitable for this kind of heavy oil pool according to experimental study, establishing initial pressure and shear wave relational model; Afterwards, performing prestack elastic wave forward and inversion research, summarizing rules under the guidance of theoretical research and numerical simulation, performing elastic impedance inversion, calculating rock physics attributes; Finally, predicting sand body distribution according to rock physics parameters, and predicting favorable oil area combine well-logging materials and made good results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seismic Numerical Modeling is one of bases of the Exploratory Seismology and Academic Seismology, also is a research field in great demand. Essence of seismic numerical modeling is to assume that structure and parameters of the underground media model are known, simulate the wave-field and calculate the numerical seismic record that should be observed. Seismic numerical modeling is not only a means to know the seismic wave-field in complex inhomogeneous media, but also a test to the application effect by all kinds of methods. There are many seismic numerical modeling methods, each method has its own merits and drawbacks. During the forward modeling, the computation precision and the efficiency are two pivotal questions to evaluate the validity and superiority of the method. The target of my dissertation is to find a new method to possibly improve the computation precision and efficiency, and apply the new forward method to modeling the wave-field in the complex inhomogeneous media. Convolutional Forsyte polynomial differentiator (CFPD) approach developed in this dissertation is robust and efficient, it shares some of the advantages of the high precision of generalized orthogonal polynomial and the high speed of the short operator finite-difference. By adjusting the operator length and optimizing the operator coefficient, the method can involve whole and local information of the wave-field. One of main tasks of the dissertation is to develop a creative, generalized and high precision method. The author introduce convolutional Forsyte polynomial differentiator to calculate the spatial derivative of seismic wave equation, and apply the time staggered grid finite-difference which can better meet the high precision of the convolutional differentiator to substitute the conventional finite-difference to calculate the time derivative of seismic wave equation, then creating a new forward method to modeling the wave-field in complex inhomogeneous media. Comparing with Fourier pseudo-spectral method, Chebyshev pseudo-spectral method, staggered- grid finite difference method and finite element method, convolutional Forsyte polynomial differentiator (CFPD) method has many advantages: 1. Comparing with Fourier pseudo-spectral method. Fourier pseudo-spectral method (FPS) is a local operator, its results have Gibbs effects when the media parameters change, then arose great errors. Therefore, Fourier pseudo-spectral method can not deal with special complex and random heterogeneous media. But convolutional Forsyte polynomial differentiator method can cover global and local information. So for complex inhomogeneous media, CFPD is more efficient. 2. Comparing with staggered-grid high-order finite-difference method, CFPD takes less dots than FD at single wave length, and the number does not increase with the widening of the studying area. 3. Comparing with Chebyshev pseudo-spectral method (CPS). The calculation region of Chebyshev pseudo-spectral method is fixed in , under the condition of unchangeable precision, the augmentation of calculation is unacceptable. Thus Chebyshev pseudo-spectral method is inapplicable to large area. CFPD method is more applicable to large area. 4. Comparing with finite element method (FE), CFPD can use lager grids. The other task of this dissertation is to study 2.5 dimension (2.5D) seismic wave-field. The author reviews the development and present situation of 2.5D problem, expatiates the essentiality of studying the 2.5D problem, apply CFPD method to simulate the seismic wave-field in 2.5D inhomogeneous media. The results indicate that 2.5D numerical modeling is efficient to simulate one of the sections of 3D media, 2.5D calculation is much less time-consuming than 3D calculation, and the wave dispersion of 2.5D modeling is obviously less than that of 3D modeling. Question on applying time staggered-grid convolutional differentiator based on CFPD to modeling 2.5D complex inhomogeneous media was not studied by any geophysicists before, it is a fire-new creation absolutely. The theory and practices prove that the new method can efficiently model the seismic wave-field in complex media. Proposing and developing this new method can provide more choices to study the seismic wave-field modeling, seismic wave migration, seismic inversion, and seismic wave imaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The two major issues in mining industry are work safety and protection of ground environment when carrying on underground mining activities. Cut-and-fill mining method is increasingly applied in China owing to its advantages of controlling ground pressure and protecting the ground environment effectively. However, some cut-and-fill mines such as Jinchuan nickel mine which has big ore body, broken rock mass and high geostress have unique characteristics on the law of ground pressure and rock mass movement that distinguish from other mining methods. There are still many problems unknown and it is necessary for the further analysis. In this dissertation, vast field survey, geology trenching and relative data analysis are carried out. The distribution of ground fissures and the correlation of the fissures with the location of underground ore body is presented. Using of monitoring data by three-dimension fissure meter and GPS in Jinchuan Deposit Ⅱ, the rule of the surface deformation and the reason of ground fissures generation are analyzed. It is shown that the stress redistribution in surrounding rocks resulting from mining, the existence of the void space underground and the influence of on-going mining activities are three main reasons for the occurrence of ground fissures. Based on actual section planes of No.1 ore body, a large-scale 3D model is established. By this model, the complete process of excavation and filling is simulated and the law of rock mass movement and stability caused by Cut-and-fill Mining is studied. According to simulation results, it is concluded that the deformation of ground surface is still going on developing; the region of subsidence on the ground surface is similar with a circle; the area on the hanging wall side is larger than one on the lower wall side; the contour plots show the centre of subsidence lay on the hanging wall side and the position is near the ore body boundary of 1150m and 1250m where ore body is the thickest. Along strike-line of Jinchuan Deposit Ⅱ, the deformation at the middle of filling body is larger than that in the two sides. Because of the irregular ore body, stress concentrates at the boundary of ore body. With the process of excavation and filling, the high stress release and the stress focus disappear on the hanging wall side. The cut-and-fill mechanism is studied based on monitoring data and numerical simulation. The functions of filling body are discussed. In this dissertation, it is concluded that the stress of filling body is just 2MPa, but the stress of surrounding rock mass is 20MPa. We study the surface movement influenced by the elastic modulus of backfill. The minimal value of the elastic modulus of backfill which can guarantee the safety production of cut-and-fill mine is obtained. Finally, based on the real survey results of the horizontal ore layer and numerical simulation, it is indicated that the horizontal ore layer has destroyed. Key words: cut-and-filling mining, 3D numerical simulation, field monitoring, rock mass movement, cut-and-filling mechanism, the elastic modulus of backfill, the horizontal ore layer

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Located in the Paleozoic uplift along the southern margin of Tu-Ha basin in eastern Xinjiang, the newly discovered Hongshan Cu-Au deposit occurs in the superimposed Mesozoic volcanic basin upon the north section of later Paleozoic Dananhu-Tousuquan accretionary arc. Kalatage Cu-Au orebelt is controlled by NWW-trend faults, and includes Hongshan and Meiling Cu-Au deposits. The host rocks of Hongshan ore district are mainly rhyolitic-dacitic ignimbrites, whereas Cu-Au mineralization is closely related to quartz porphyry, rhyolitic porphyry and granitic porphyry. Mineralization styles are dominantly veinlet-disseminated and veinlet, occasionally stockwork. The mineral association is chalcopyrite, pyrite, bornite, chalcocite and sphalerite. The hydrothermal alteration consists of silicfication, sericitization, alunitization, pyrophylitization, illitization, hydromuscovitization, and chloritization. Hongshan Cu-Au deposit, on the edge of the desert, is one of the driest areas in eastrn Tianshan. Moreover, the highest temperature has been up to 60℃, and the average rainfall receives only 34.1mm/y. The light rainfall and rapid evaporation in the vicinity of this deposit have allowed the formation of a great variety of water-soluble sulfates. Oxidization zone of this deposit lies on the upper part of primary sulfide orebodies appearing with a depth of 50-60m, which is dominant in sulfate minerals. 1. Based on the field observation, the volcanic and sub-volcanic rock composition, hydrothermal alteration, ore structure and mineralization characteristics, this paper proposed that the Hongshan Cu-Au deposit belongs to a transitional type from high-sulfide epithermal to porphyry Cu-Au deposit, which corresponds with the typical HS-epithermal deposit such as Zijinshan Au-Cu deposit in Fujian Province, SE-China. 2. The Hongshan copper-gold deposit was controlled by the tectonic, stratum, magma activity and volcanic apparatus, whereas Au mineralization is closely related to quartz porphyry, rhyolitic porphyry and fine grained pyritization in hydrothermal activity, and Cu mineralization is closely related to quartz porphyry and hydrothermal explosive breccia. 3. Oxidation zone of Hongshan Cu-Au deposit lies on the upper part of primary sulfide orebodies deposit. 23 sulfate minerals were identified in this work. The results of samples XRD and chemical analysis were furthermore confirmed through thermal, infrared spectrum and mössbauer spectrum analysis. Among those, nine minerals as Ferricopiapite, Cuprocopiapite, Rhomboclase, Parabutlerite, Krausite, Yavapaiite, Metasideronatrite Kroehnkite and Paracoquimbite were founded in China for the first time. And Paracoquimbite was secondly reported in the world (first case reported at 1938 in Chile). 4. EPMA analysis shows that Al impurity in crystal lattice is important to polytype formation of paracoquimbite and coquimbite besides stack fault. 5. Compared with Meiling Cu-Au deposit in the same Kalatage ore belt from the characteristics of δ34S of barite, lithofacies, hydrothermal alteration and homogeneous temperature, Hongshan Cu-Au deposit belongs to the same metallogenic system of HS-epithermal type as Meiling Cu-Au deposit. But Hongshan Cu-Au deposit has less extensive alteration and shallower denudation. 6. Sulfur isotope analyses show that δ34S values of pyrites vary in the range of +1.86‰~+5.69‰, with an average of 3.70‰, mostly in the range of +1.86‰~+3.20‰, and δ34Scp<δ34Spy. Therefore ore-forming fluid of porphyry comes from mantle and was contaminated by the earth’s crust. Sulfur isotope has reached balance in ore-forming process. 7. Sulfur isotope analyses show that δ34S values of sulfates vary in the range of +2.15‰~+6.73‰, with an average of +3.74‰, mostly equals as δ34S values of primary sulfides in Hongshan Cu-Au deposit. So supergene sulfates inherit sulfur of primary sulfide. δ34S values are mostly same in different sulfates. As well as pyrite and chalcopyrite, volcanic hot spring and associated native sulfur underground also provide water medium and sulfur during the formation process of sulfate. 8. According to the EPMA of sample chalcopyrite and pyrite in Hongshan Cu-Au, the value of Cu/Ni is 0.98-34.72, mostly close to the value of 5, which shows that Hongshan deposit is a typical volcanogenic magmaic hypothermal deposit. Au and Ag, Zn, Te and Bi are positive correlation, Cu and Hg, Se, Sb are positive correlation, indicates Au and Cu don’t locate in the factor of mineralization of same mineralization groups. The reasons of gold concentration in the oxidation zone are: 1). Change of redox potential (Eh) makes gold to deposit from the liquid of mineralization zone; 2). PH is one of the most factors of gold’s deposition; 3). Soluble complex and colloid of gold can be adsorbed easily. 9. The biotite and hornblende K-Ar isotopic ages from the wall rock-quartz diorite, biotite granite and monzonite granite are 231.99±3.45Ma, 237.97±2.36Ma and 296.53±6.69Ma respectively. The ore-bearing rhyolitic breccia lava contains breccia of the biotite granite which indicates the volcanism and related Cu-Au mineralization occurred later than the granite, possibly in Mesozoic. K-Ar ages of granitoids in Sanya, Baishiquan and Hongliugou area and Molybdenite Re-Os age of Baishan Mo deposit all are in Triassic. Besides late Paleozoic magmatism, igneous magmatic event of Mesozoic was widespread in eastern Tianshan. 10. The K-Ar age dating indicates that the K-Ar age of Voltaite occurred below surface 1m is 56.02±3.98Ma, K-Ar age of Ferricopiapite occurred below surface 1.5m is 8.62±1.12Ma, K-Ar age of Yavapaiite occurred below surface 14 m is 4.07±0.39Ma, and K-Ar age of Voltaite occurred below surface 10 m is 14.73±1.73Ma. So the age interval of oxidation zone of Hongshan copper-golden bed is between 60 -3.38Ma. Oxidization occurred at Caenozoic era (from 65Ma), which can be identified through comparing with different deposits oxidation zone in other countries. The coupling between global tectonic event and climatic change event which occur from Caenozoic era has some effect on epigeosphere system, which can act on the surface of bed oxidation zone similarly. It induces that the age mentioned above coincide with collision of India-Asia and multistage uplifting of Qinhai-Tibet Plateau happened subsequently. Bed oxidation zone is the effect and record of collision and uplifting of Tibet Plateau. The strong chemical weathering of surface accumulation to which was leaded by PETM event occurred Paleocene and Eocene is the reason of Voltaite sharply rises. On the contrary, Ferricopiapite formed due to the global cold weather. The predecessor did much research through biota, isotopes, susceptibility, but this paper try to use different sulfate mineral instead of climatic change. So the research of sulfate minerals not only indicates a great deal of oxidized zone feature, but also the intergrowth of sulfate minerals may be used to trace paleoenviroment and paleoclimate of oxidation zone. 11. Analysis of the information of alteration and mineralization features of four bore cores, induced activity polarization well logging and Eh-4 geophysical section, deep mineralization anomaly objects of Hongshan ore districts shows low resistance, middle and high polarization, measurements of Eh-4 consecutive conductance section show the existing of concealed porphyry ore body deeper than 450m, on the top of and around rock body there are low resistance body ranged from 100-300Ω•m, this area may be the ore-bearing part. In a word, Hongshan Cu-Au deposit deposit is a combine of upper HS-style epithermal Au deposit and deeper porphyry mineralization system. It has great potential to find large HS-style epithermal-porphyry Au-Cu deposits. This paper consists of seven chapters and twenty seven sections. The geological character of deposit is basic condition in this work. Constitute of oxidation zone, research of sulfate mineral, relation between oxidation and primary zone, K-Ar ages of potassic sulfate are key parts of thesis. Genesis of ore deposit is the further expansion of this research. Analysis of ore-controlling factors is the penetration above basic. Analysis of potential is application of exploration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Micro-pore-throat, micro-fracture and low permeability are the most obvious characters of Xifeng ultra-low permeability reservoir, and threshold pressure gradient and medium deformation during the period of oilfield developing results non-linear seepage feature of the formation liquid flowing in the porous medium underground. It is impossible to solve some problems in the ultra-low permeability reservoir development by current Darcy filtration theory and development techniques. In the view of the characters of ultra-low permeability and powerful-diagenesis and fracture up-growth, the paper quantitatively characterizes of through-going scope for reservoir parameters together with some materials such as similarity field outcrop, rock core, drilling, well logging and production dynamic, which provides geological base for further development adjustment. Based on the displacement experiment of different kinds of seepage fluid and oil-water two phases, this paper proves the relationship between threshold pressure gradient and formation permeability in experiment and theory, which is power function and its index is about -1. The variation rule and the mechanism of oil-water two phases threshold pressure gradient are studied. At the same time, based on the experiment of medium deformation, the variation rule of formation physical property parameters and the deformation mechanism are researched, and the influential factors on the medium deformation are analyzed systematically. With elastic unsteady filtration theory, nonlinear mathematical models of the steady and unsteady flow of single phase as well as horizontal well flow and oil-water two phases flow are deduced with the influence of nonlinear factors including threshold pressure gradient and media deformation. The influences of nonlinear factors upon well deliverability and reservoir pressure distribution as well as the saturation variation pattern of oil-water front are analyzed. By means of the researches such as reasonable well pattern, reasonable well array ration, artificial fracture length optimization advisable water flood timing and feasibility of advanced water flooding, it is necessary to find out effective techniques in order to improve development result of this kind of reservoir. This research result develops and improves on low-velocity nonlinear seepage theory, and offers ways to study similar kind of reservoir; it is meaningful to the development of the ultra-low permeability oil and gas reservoir.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on field survey, laboratory testing and numerical modeling, engineering characteristics of undisturbed loess and the mechanism of long-runout loess landslides caused by underground water level rise, as well as the formation conditions and spatial distribution of landslides, are systematically studied and analyzed. Loess landslides at south Plateau of Jingyang County are mainly classified as flowslide, slide and fall. Flowslide is the main type characteristic of high velocity, long runout and multi-stages. The steep relief composed of loose structured loess-old aged soil serials and the rise of groundwater table are the predominant conditions for landslides in the study area. To study loess mechanic poperties and loess landslides mechanisims, isotropically and anisotropically consolidated undrained compression(ICU and ACU) tests and constant-deviator-drained compression (CQD) tests were carried out on undisturbed samples. The results of undrained compression tests performed at the in-situ stress level show that the soils are of consistently strain-softening in the stress-strain relations and cause high excess pore pressure. The steady-state line and the potential region of instability are obtained from ICU and ACU test results. A necessary condition for liquefaction is that the soil state initially lies in or is brought into the potential instability region. In addition, a strong strain-softening model is also formed. CQD tests demonstrate that the mobilized friction angle is far less than the steady-state angle and that the soil experiences undrained contractive failure suddenly at very small strains when its stress path during drained loading tries to cross the potential instability region,thus validates the proposed instability region. Based on the location of the region of potential instability and the stress state of slope soil, a method of static liquefaction analysis is proposed for loess landslides caused by rise in groundwater table. Compared with other liquefaction analysis methods, this method overcomes the limitations inherent in conventional slope stability method and undrained brittleness index method. Triaxial tests composed of constant water content (CW) and wetting tests at constant deviator stress are performed on undisturbed unsaturated samples. The stress-strain relation of CW tests takes on strain-hardening behavior; The results of wetting tests at constant deviator stress designed to study the mechanics of failure of unsaturated loess caused by an increase in the degree of saturation (wetting) shows that a contractive failure occurs in the undisturbed samples. On the basis of the above triaxial test results, the initiation of static liquefaction is presented for long-runout loess landslides caused by rise in groundwater table, that is, the loess slope soil gradually transfer from unsaturated to saturated state under the infiltration of irrigation. A contractive failure occurs in the local region at very small strain by increasing the pore-water pressure at constant deviator stresses under drained conditons. It is the contractive failrue resulting from rise of pore pressure that leads to high excess pore pressure in the neighbour soil which reduces shear resistance of soil. The neighbour soils also fail due to the rapid increase in pore-water pressure. Thus a connected failure surface is developed quickly and a flowslide occurs. Based on the saturated-unsaturated seepage theory, transient seepage is computed using the finite element method on loess slope under groundwater table rise. Pore-water pressure distribution for every time step after irrigation are obtained. The phreatic surface in the slope increases with the groundwater table. Pore-water pressure distribution within 8m above the phreatic surface changes very quickly,but the water content and pore water pressure in the region ranging from 8m above the phreatic surface up to ground surface is almost not affected and the matric suction usually is kept at 100~120 kPa. Based on the results of laboratory tests and seepage flow analysis, the development process of loess landslide is modeled considering groundwater table rise. The shearing plastic zone first occurs at the slope toe where the soil is soaked for long term during rise in groundwater table. As irrigation continues, the shearing plastic zone gradually extends to the interior soils, with the results that the tensile plastic zone occurs at the slope crown. As time goes on, both the shearing plastic zone and tensile plastic zone continue to extend. Then a connected plastic zone is formed and fowslide occurs. In comparision to laboratory test results, the results of numerical simulation quite well verify the presented mechanism of static liquefaction of long-runout loess landslides caused by rise in groundwater table.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As a kind of strategic resource,petroleum play an very important role in current social stability, economic development and state safety. Since 1993 China has turned from a net oil exporter into a net oil importer, the figure of imported oil increased from then on. In 2004 China's total energy consumption exceeded Japan’s, and ranked in the second place, just inferior to America. Today China is the world’s third-largest importing nation, accounting for 6% of world imports and 8% of world consumption. Comparing with other strategic petroleum reserve schemes, underground oil storage possess many advantages, such as security, economy, less pollution, save land, suited for strategic reserve and so on, so it is the most ideal form for strategic petroleum reserve. In the background of China Strategic Petroleum Reserve Program started just now, this paper choose Circum-Bo sea region as a study area, and do some system study on the underground oil storage caverns constructed in inter-large granite rock masses in Circum-Bo sea region. On the foundation of a great amount of information come from both home and abroad, firstly this paper analysed the principle, economy, cavern shape, profile dimension, and gain some cognizances and logos, as follows: ①Hard rock mass such as granite is the major rock, in which underground oil storage are constructed; ②Unlined underground oil storage caverns had been wide spread used as a sort of oil storage form abroad, there already exist a suit of skilled experience and technologies to prevent oil product from leaking; ③Compared with surface tanks, underground oil storage cavern possess predominance in economy clearly. In general, it will be more economical when the storage capacity exceed 50000m3. The quality of rock mass is the most important factor for underground storage cost, however such as hydrogeology, storage capacity, the number of storage galleries, the length, storage product, mechanical equipments, geographic location also influent the cost. In designed depth of the underground storage, the rock mass of Jinzhou mainly belong to class Ⅱ, but parts with dykes, clayization alteration, and dense joints are Ⅲ, Ⅳ; ④Now, there are few underground oil storages span more than 25m in both abroad and home. The examples of some ancient underground works and modern underground excavation with wide span surely give us many precious elicitations to construct more great unlined storage caverns, when the rock mass quality is good, cavern shape and construction method also are proper, it is quite possible to construct underground oil storage cavern with span more than 30m . The main axis orientation of Jinzhou underground oil storage cavern is NW direction, the cavern's elevation locate between -53msl and -76msl. The storage's total volume is about 3×106m3, composed of 8 parallel galleries with 950m length, the pillars between them are 45m, and every two of galleries form one unit, which can deposit 75×104m3 for each unit. The product will be stored are Saudi light and Saudi medium crude oil, the main cavern's section is 411.5m2, with 23m height and 19m width. According to the principle and technique of engineering geomechanics, this study supply a sort of system scientific thinking and method for sitting location of underground oil storage in granite region: ① On the foundation of the earth crust stability sub-zone appraise of Circum-Bo sea region, farther research concerning granite distribution, genesis, geological period and fault structure are conducted in stable areas, generally, this paper select Liaoxi, east shore of Liaotung peninsula and Jiaotung peninsula as target areas for underground oil storage regions, where Mesozoic granite is magnitude; ②After roundly comparison in facts of geologic structure, engineering geology, hydrogeology, topography, transportation and so on of three granite distributed areas, at last, selecting Jingzhou granite zone in Liaoxi out as an ideal construction area; ③ Detailed investigation is conducted in the southeast of Baimashi in Jingzhou development district, the final field. Ultrasonic Borehole Television, as a major way to collect original information of borehole rock mass were used, which is very effective to appraise the quality of deep rock mass; ④ According to the field data of tectonic stress, rock mass quality, the spatial distribution of fracture water, some optimum designs in cross section, axial direction and cavern span have been designed for the underground oil storage cavern layout in Jinzhou. To understand the characteristics of swelling alteration rock in Jinzhou granite mass, collected abundant swelling alteration rock engineering examples in granite, which study them in detail, concluded the swelling alteration rock distribute nearly everywhere in China, intruded medium-basic dykes alteration, along discontinuities and mineral hydrothermal alteration with genesis of granite are three main forms clayization alteration rock in granite rock mass. In Jinzhou field, from macro to micro studied the swelling rock which induced by mid-basic dyke intrusion, with weak swelling. In conclusion, this paper conclude the distribution rule and features of expansion alteration rock in filed, and advise some technical suggestions for excavation at swelling alteration rock part. The main features of this paper: ①In the process of site selection, investigation and design, a suit of technique and method of engineering geomechanics metasynthesis were formed, which is significative to guide the large scale underground oil storage cavern sitting location, investigation and design in granite rock mass; ②The detailed discussion on the engineering geology problems in granite mass, such as weathering crust, faults, dykes and clayization alteration rock, are useful for other projects in aspects of site selection, engineering geology evaluation and stability estimation; ③The summary and integration of the genesis, type, countermeasure relate to swelling alteration rock, also is likely to be used for other underground oil storage caverns constructed in swelling alteration granite. In conclusion, this study is meaningful for guiding the large scale underground oil storage for site selection, investigation and design in granite rock mass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Jinchuan Nickel Mine is the largest underground mine with cut-and-fill mining in China. It is very difficult to be exploited for very low safety stability of rock mass caused by complex geological conditions, developed faults, cracked rock mass and high stress. In this paper, the laws of rock mass movement、mechanics of shaft deformation and destroy were analyzed based on the collection of date, the detailed field engineering investigations, ground movement monitoring by GPS, theoretical analysis and numerical simulation. According to the GPS monitoring result of ground surface movement, there are different ground movement characteristics among the three Mine area of Jinchuan Nickel Mine. In No. 2 Mine area, the ground movement funnel with apparent asymmetry is developing, the influence scope is larger in the up faulted block than in the down faulted block, and the centre of ground movement is moving along the up faulted block direction with increasing depth of mining. Moreover, the tunnels in the corresponding area with the centre of ground movement are damaged seriously. In Longshou Mine area, the ground movement funnel is also developing, but the moving path and the nonlinear characters are more sophisticated because of the long-term effects of open excavating and the effects of underground mining together. In No. 3 Mine area, the underground mining impact on surface is not serious for the time of mining activity is not for long, but the ground movement funnel is also forming now. The underground mining has caused widespread land subsidence in Jinchuan Nickel Mine area, but the phenomena of surface raise appeared in some partial areas of Longshou Mine area and No. 3 Mine area. Analysis proved that the reason for the open pit bottom raise is the slope deformation activation caused by the excavation from open pit into underground mine; and that the raise of surface in No.3 Mine area is caused by the effect of elastic foundation due to underground mining. Although the GPS Monitoring results show the amount of subsidence is increasing constantly, the subsidence rate has a descending tendency with fluctuation in Jinchuan No. 2 Mine area. The subsidence rate curve is a time function and exists an extreme point, the rate increasing before extreme point and decreasing after the extreme point ,but the scale of decreasing rate will be very small after the rate decreasing up to a certain degree, moreover, the characteristics is different among different areas, which have some relation with the distance to the mining section and the dip of the ore body. ArcView is GIS software, which we adopted as a development platform, and made secondary development by its development language “avenue”, through which we developed a ground movement analysis and forecast System for Jinchuan Nickel Mine, which contain three modules : management of ground movement information; analysis and evaluation of ground movement; and ground movement forecast. In the module of evaluation, using the technique of MATLAB6.5 program with VB6.0, the system can achieve the ANN prediction model for GPS monitoring data, data preparation results analysis and model integrated was realized by Avenue programming. Finally, the author analyzed the mechanical of deformation and destroy of the No. 14 shaft, and its repair and artificial-support effectiveness also given detailed demonstration in various aspect. The result showed that the reason for the destroy of No. 14 shaft is underground mining, and being the case, the destroy of the shaft also has its special features, which mainly contains forked stress contour for mining steep ore and fault effect caused by mining activities. The repair and artificial-support played some restrictions on the rock mass movement and deformation, but did not show a strong or marked effect. With the increasing of mining depth and large-scale, the closure rock of the shaft will still deformed, even be destroyed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toppling is a major failure model in anti-dip layered rock slopes. Because of the limited by testing means and experimental apparatus, present research on the deformation mechanism and stability analysis are mainly focus on the 2-Dimensional deformation, and the research really based on 3-Dimension is still limited. Therefore, based on the present research station, the article rely on the important hydroelectric project of typical anti-dip layered rock slopes -- The left bank slope of Long-tan hydropower-station in Guang Xi, China, and focused on the influencing factors, deformation mechanism and stability analysis of anti-dip layered rock slopes, three problems as follows are researched in this paper. (1) Deformation influencing factor analysis on ant-dip layered rock slopes Three influencing factors are included: geological factor, engineering factor and environmental factor. It is concluded that the toppling deformation of anti-dip layered rock slopes are more sensitive to geological and engineering factors, but less sensitive to environmental factor. In addition, the sensitivity of various factors to the rock toppling deformation is also arranged sequentially as follows: construction, gravitation, rainfall (underground water) and rock structure intensity, etc. (2) 3D deformation study on the anti-dip layered toppling rock slopes Used 3D Distinct Element Method (3DEC) analyzed the 3D deformation characteristic of anti-dip layered rock slops. It can be seen that the toppling characteristics are obvious when the inter-angle between slope direction and layer striking direction is under 20o, when the inter-angle is over 20o and equal or less than 40o,the toppling deformation characteristics decrease sharply with increase of inter-angle, when the inter-angle is over 40o , the slope deformation is not controlled by joints but influenced by other failure mode. Therefore, in order to quantify the toppling characteristics, a differential value of displacement vector angle between layered rock slope and block rock slope is proposed as a key index to distinguish failure model for anti-dip layered rock slopes, and it was applied to study the toppling of the rock slopes at Guangxi Long-tan hydropower station, China. The results indicated that the index was effective and instructive for analyzing the anti-dip layered rock slopes. (3) Stability analysis methods Because of the imperfection of some present slope analysis methods, based on slope failure mode and those three influencing factors, “slope stability entropy” method is defined in this paper, which makes good use of the sensitivity of relational matrix to influencing factors on slope stability and the qualification characteristics for information entropy to the irregularity of slope deformation. By this method, not only the randomness of geologic body on the base of dynamic analysis of slope failure mode is fully concerned, but also it makes the analysis time-saving and simple. Finally, the research findings were used to the engineering example successfully, and rational conclusion has been obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During tunnel constriction the classification of rock mass is widely used in tunnel design and construction. Moreover it offers the base information about tunnel investment and security. The quick classification of rock mass is very important for not delaying tunnel construction. Nowadays the tunnel engineers usually use initial survey files which are obtained by probe drilling to design a tunnel. It brings the problem that initial surrounding rock classification is usually much different from the real condition during the tunnel construction. Because initial surrounding rock lack credibility, it need us to make real time surrounding rock classification during the tunnel construction, and feed back the result to designers and constructors. Therefore, to find a quick wall rock classification method is very important not only for the time limit for a project but also for not delaying tunnel construction. Not all but many tunnels and underground constructions do suffer form collapse during the period of construction. Although accidental collapse in a large project in civil and geotechnical engineering sometimes appears to be a local event, if it occurred, it can bring about casualties, disrupted,production, construction delay, environmental damage, capital cost etc,therefore, it has been a difficult problem ,both in theory and in practice, establishing how to prevent underground structures form collapse and how to handle such an event in case in occurs. It is important to develop effective solutions and technical measures to prevent and control the collapse. According to the tunnel collapse occurred in Cheng De this paper analyze the main collapse mechanism leading to tunnel collapse and summon up the disposal method when collapse happened. It may be useful for tunnel construction in Cheng De in future. This paper is base on tunnel surrounding rock classification and tunnel support tasks during the tunnel construction in Cheng De area. It aims at solving 4 important problems in tunnel design and construction. 1) The relationship between rock rebound strength and rock single axle compression strength. First we go to the face wall and do rebound test on the tunnel face, then we chose some pieces of rock and do point loading test. Form the tests record we try to find the relationship between rock rebound strength and rock single axle compression strength. 2) The relationship between the value [BQ] and the value Q. First in order to obtain the information of rock character, rock strength, degree of weathering, the structure of rock mass, the joint condition, underground water condition and so on, we go to the tunnel face to do field investigation. And then we use two kinds of rock classification method to make surrounding rock classification. Base on the works above, finally we analyze the relationship between the value [BQ] and the value Q. 3) Sum up the mechanism leading to tunnel collapse and it disposal method in Cheng De area According to the tunnel collapse occurred in Cheng De this paper analyze the main reasons leading to the tunnel collapse and sum up the disposal method when collapse happened. 4) Obtain the properties of steel frame grid by numerical simulation. First we establish the 3D numeral model of steel frame grid by ADINA, and then find the mechanics properties by numerical simulation in ADINA. Second Based on the rock mass geological structure model, we established steel frame grid numeral model which is installed in the tunnel by FLAC3D and simulated the progress of tunnel construction. We hope that the support effect in tunnel can be evaluated from the numerical simulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seismic signal is a typical non-stationary signal, whose frequency is continuously changing with time and is determined by the bandwidth of seismic source and the absorption characteristic of the media underground. The most interesting target of seismic signal’s processing and explaining is to know about the local frequency’s abrupt changing with the time, since this kind of abrupt changing is indicating the changing of the physical attributes of the media underground. As to the seismic signal’s instantaneous attributes taken from time-frequency domain, the key target is to search a effective, non-negative and fast algorithm time-frequency distribution, and transform the seismic signal into this time-frequency domain to get its instantaneous power spectrum density, and then use the process of weighted adding and average etc. to get the instantaneous attributes of seismic signal. Time-frequency analysis as a powerful tool to deal with time variant non-stationary signal is becoming a hot researching spot of modern signal processing, and also is an important method to make seismic signal’s attributes analysis. This kind of method provides joint distribution message about time domain and frequency domain, and it clearly plots the correlation of signal’s frequency changing with the time. The spectrum decomposition technique makes seismic signal’s resolving rate reach its theoretical level, and by the method of all frequency scanning and imaging the three dimensional seismic data in frequency domain, it improves and promotes the resolving abilities of seismic signal vs. geological abnormal objects. Matching pursuits method is an important way to realize signal’s self-adaptive decomposition. Its main thought is that any signal can be expressed by a series of time-frequency atoms’ linear composition. By decomposition the signal within an over completed library, the time-frequency atoms which stand for the signal itself are selected neatly and self-adaptively according to the signal’s characteristics. This method has excellent sparse decomposition characteristics, and is widely used in signal de-noising, signal coding and pattern recognizing processing and is also adaptive to seismic signal’s decomposition and attributes analysis. This paper takes matching pursuits method as the key research object. As introducing the principle and implementation techniques of matching pursuits method systematically, it researches deeply the pivotal problems of atom type’s selection, the atom dictionary’s discrete, and the most matching atom’s searching algorithm, and at the same time, applying this matching pursuits method into seismic signal’s processing by picking-up correlative instantaneous messages from time-frequency analysis and spectrum decomposition to the seismic signal. Based on the research of the theory and its correlative model examination of the adaptively signal decomposition with matching pursuit method, this paper proposes a fast optimal matching time-frequency atom’s searching algorithm aimed at seismic signal’s decomposition by frequency-dominated pursuit method and this makes the MP method pertinence to seismic signal’s processing. Upon the research of optimal Gabor atom’s fast searching and matching algorithm, this paper proposes global optimal searching method using Simulated Annealing Algorithm, Genetic Algorithm and composed Simulated Annealing and Genetic Algorithm, so as to provide another way to implement fast matching pursuit method. At the same time, aimed at the characteristics of seismic signal, this paper proposes a fast matching atom’s searching algorithm by means of designating the max energy points of complex seismic signal, searching for the most optimal atom in the neighbor area of these points according to its instantaneous frequency and instantaneous phase, and this promotes the calculating efficiency of seismic signal’s matching pursuit algorithm. According to these methods proposed above, this paper implements them by programmed calculation, compares them with some open algorithm and proves this paper’s conclusions. It also testifies the active results of various methods by the processing of actual signals. The problems need to be solved further and the aftertime researching targets are as follows: continuously seeking for more efficient fast matching pursuit algorithm and expanding its application range, and also study the actual usage of matching pursuit method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stress change is one of key factors in seismic nucleating and triggering; therefore for understanding and forecasting earthquakes, it is necessary to research on stress status and its changes in rocks. Propagating in underground structures, wave velocity and attenuation contain information on stress changes of the Earth’s interior. For a better understanding of relationship between seismic data and stress changes, modeling and ultrasonic test supply significant references. In this article, acoustoelastic theory is introduced to explain nonlinear elastic characteristics of rocks. Based on the acoustoelastic theory, a solid-fluid coupled model is given to calculate velocity under different stress for porous and liquid fulfilled rocks. Except for the stress-velocity relationship, effects of pore pressure induced stress changes on ultrasonic coda attenuation are also studied. Intrinsic attenuation quality factors are calculated for a comparison purpose. Finally, the relationship between elastic constants and stress changes is thoroughly investigated, a mixture model from two phases of Hooke media is introduced to explain the differences between dynamic and static moduli, a relation among wave length, wave velocities and elastic moduli considering dimension of microstructure, dimension and state of surface between phases is presented. The most important aspect of this work is exploring and establishing relationships between the seismic properties of rocks and changes of their stress conditions, which will have its application in earthquake forecast and seismic hazard.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

China is a mountainous country in which geological hazards occurred frequently, especially in the east of China. Except the geology, topography and extreme climate, the large scale human activities have become a major factor to landslides. Typical human activities which induced landslides are fill, cut and underground mining. On the topic of the deformation mechanism and slope stability, taking three different man-made slopes as examples, deformation mechanism and slope stability were studied by several methods, such as field work, numerical modeling and monitor. The details are as following: (1) The numerical modeling approach advantages over other conventional methods such as limit methods, so the numerical modeling is the major tool in this thesis. So far, there is no uniform failure criterion for numerical simulation. The failure criterion were summarized and analyzed firstly, subsequently the appropriate criterion was determinated. (2) Taking 220kV Yanjin transformation substation fill slope as example, the deformable characteristic, unstable mode and laboratory tests were studied systematically. The results show: the slope deformation was probably caused by a combination effect of unfavorable topographic, geological and hydro geological conditions, and external loading due to filling. It was concluded that the creep deformation of the slope was triggered by external loading applied at the back of the slope. In order to define the calculating parameters, a set of consolidated drained (CD) tests, consolidated undrained (CU) tests, repeated direct shear tests and UCS tests were carried out. The stability of the slope before and after reinforcement was assessed using 3D numerical modeling and shear strength reduction technique. The numerical modeling results showed: the factor of safety (FOS) of the slope was 1.10 in the natural state, and reduced to 1.03 after fill, which was close to the critical state and it caused creeping slip or deformation under rainfall. The failure surface in the slope is in active shear failure, whereas tensile failure occurs at the slope crest. After the site was reinforced with piles, the FOS was 1.27. Therefore, the slope is stable after reinforcement measures were taken. (3) The cut slope stability is a complex problem. Taking the left cut slope of Xiangjiaba as example in this thesis, the deformation and slope stability were studied systematically by numerical modeling and monitor methods. The numerical results show: the displacement is gradually increasing along with the cutting, and the largest displacement is 27.5mm which located at the bench between the elevation 340 and 380. Some failure state units distribute near the undermining part and there is no linked failure state occurred from crest to bottom during cutting. After cutting, some failure units appeared at the ground surface between elevation 340 and 360. The increasing tense stress made the disturbed rock failed. The slope is stable after cutting by the monitor method, such as surface monitor, multipoint displacement meter, inclinometer and anchor cable tensometer. (4) The interaction between underground mining and slope stability is a common situation in mountainous. The slope deformation mechanism induced by underground mining may contributed significantly to slope destabilization. The Mabukan slope in xiangjiaba was analyzed to illustrate this. Failure mechanism and the slope stability were presented by numerical modeling and residual deformation monitor. The results show: the roof deformed to the free face and the floor uplift lightly to the free face. The subsidence basin is formed, but the subsidence and the horizontal movement is small, and there is no failure zone occurred. When the underground mining is going on, the roof deformation, subsidence and the horizontal movements begin increasing. The rock deformation near the free face is larger than the ground surface, and the interaction between these coal seams appeared. There are some tensile failures and shear failures occurred on the roof and floor, and a majority of failure is tensile failure. The roof deformation, subsidence and the horizontal movements increased obviously along with the underground mining. The failure characteristic is shear failure which means the tensile stress transformed to the compressive stress. So the underground mining will induced tensile stress first which lead to structure crack, subsequently the compressive stress appeared which result in slippage. The crest was subjected to horizontal tension which made the rock crack along with the joint. The long term residual deformation monitor demonstrates that the slope is stable after the underground mining stopped.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evaluating the mechanical properties of rock masses is the base of rock engineering design and construction. It has great influence on the safety and cost of rock project. The recognition is inevitable consequence of new engineering activities in rock, including high-rise building, super bridge, complex underground installations, hydraulic project and etc. During the constructions, lots of engineering accidents happened, which bring great damage to people. According to the investigation, many failures are due to choosing improper mechanical properties. ‘Can’t give the proper properties’ becomes one of big problems for theoretic analysis and numerical simulation. Selecting the properties reasonably and effectively is very significant for the planning, design and construction of rock engineering works. A multiple method based on site investigation, theoretic analysis, model test, numerical test and back analysis by artificial neural network is conducted to determine and optimize the mechanical properties for engineering design. The following outcomes are obtained: (1) Mapping of the rock mass structure Detailed geological investigation is the soul of the fine structure description. Based on statistical window,geological sketch and digital photography,a new method for rock mass fine structure in-situ mapping is developed. It has already been taken into practice and received good comments in Baihetan Hydropower Station. (2) Theoretic analysis of rock mass containing intermittent joints The shear strength mechanisms of joint and rock bridge are analyzed respectively. And the multiple modes of failure on different stress condition are summarized and supplied. Then, through introducing deformation compatibility equation in normal direction, the direct shear strength formulation and compression shear strength formulation for coplanar intermittent joints, as well as compression shear strength formulation for ladderlike intermittent joints are deducted respectively. In order to apply the deducted formulation conveniently in the real projects, a relationship between these formulations and Mohr-Coulomb hypothesis is built up. (3) Model test of rock mass containing intermittent joints Model tests are adopted to study the mechanical mechanism of joints to rock masses. The failure modes of rock mass containing intermittent joints are summarized from the model test. Six typical failure modes are found in the test, and brittle failures are the main failure mode. The evolvement processes of shear stress, shear displacement, normal stress and normal displacement are monitored by using rigid servo test machine. And the deformation and failure character during the loading process is analyzed. According to the model test, the failure modes quite depend on the joint distribution, connectivity and stress states. According to the contrastive analysis of complete stress strain curve, different failure developing stages are found in the intact rock, across jointed rock mass and intermittent jointed rock mass. There are four typical stages in the stress strain curve of intact rock, namely shear contraction stage, linear elastic stage, failure stage and residual strength stage. There are three typical stages in the across jointed rock mass, namely linear elastic stage, transition zone and sliding failure stage. Correspondingly, five typical stages are found in the intermittent jointed rock mass, namely linear elastic stage, sliding of joint, steady growth of post-crack, joint coalescence failure, and residual strength. According to strength analysis, the failure envelopes of intact rock and across jointed rock mass are the upper bound and lower bound separately. The strength of intermittent jointed rock mass can be evaluated by reducing the bandwidth of the failure envelope with geo-mechanics analysis. (4) Numerical test of rock mass Two sets of methods, i.e. the distinct element method (DEC) based on in-situ geology mapping and the realistic failure process analysis (RFPA) based on high-definition digital imaging, are developed and introduced. The operation process and analysis results are demonstrated detailedly from the research on parameters of rock mass based on numerical test in the Jinping First Stage Hydropower Station and Baihetan Hydropower Station. By comparison,the advantages and disadvantages are discussed. Then the applicable fields are figured out respectively. (5) Intelligent evaluation based on artificial neural network (ANN) The characters of both ANN and parameter evaluation of rock mass are discussed and summarized. According to the investigations, ANN has a bright application future in the field of parameter evaluation of rock mass. Intelligent evaluation of mechanical parameters in the Jinping First Stage Hydropower Station is taken as an example to demonstrate the analysis process. The problems in five aspects, i. e. sample selection, network design, initial value selection, learning rate and expected error, are discussed detailedly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major impetus to study the rough surface and complex structure in near surface model is because accuracy of seismic observation and geophysical prospecting can be improved. Wave theory study about fluid-satuated porous media has important significance for some scientific problems, such as explore underground resources, study of earth's internal structure, and structure response of multi-phase porous soil under dynamic and seismic effect. Seismic wave numerical modeling is one of the effective methods which understand seismic propagation rules in complex media. As a numerical simulation method, boundary element methods had been widely used in seismic wave field study. This paper mainly studies randomly rough surface scattering which used some approximation solutions based on boundary element method. In addition, I developed a boundary element solution for fluid saturated porous media. In this paper, we used boundary element methods which based on integral expression of wave equation to study the free rough surface scattering effects of Kirchhoff approximation method, Perturbation approximation method, Rytov approximation method and Born series approximation method. Gaussian spectrum model of randomly rough surfaces was chosen as the benchmark model. The approximation methods result were compared with exact results which obtained by boundary element methods, we study that the above approximation methods were applicable how rough surfaces and it is founded that this depends on and ( here is the wavenumber of the incident field, is the RMS height and is the surface correlation length ). In general, Kirchhoff approximation which ignores multiple scatterings between any two surface points has been considered valid for the large-scale roughness components. Perturbation theory based on Taylor series expansion is valid for the small-scale roughness components, as and are .Tests with the Gaussian topographies show that the Rytov approximation methods improves the Kirchhoff approximation in both amplitude and phase but at the cost of an extra treatment of transformation for the wave fields. The realistic methods for the multiscale surfaces come with the Born series approximation and the second-order Born series approximation might be sufficient to guarantee the accuracy of randomly rough surfaces. It could be an appropriate choice that a complex rough surface can be divided into large-, medium-, and small-scale roughness components with their scattering features be studied by the Kirchhoff or Rytov phase approximations, the Born series approximation, and the perturbation theory, respectively. For this purpose, it is important to select appropriate parameters that separate these different scale roughness components to guarantee the divided surfaces satisfy the physical assumptions of the used approximations, respectively. In addition, in this paper, the boundary element methods are used for solving the porous elastic wave propagation and carry out the numerical simulation. Based on the fluid-saturated porous model, this paper analyses and presents the dynamic equation of elastic wave propagation and boundary integral equation formulation of fluid saturated porous media in frequency domain. The fundamental solutions of the elastic wave equations are obtained according to the similarity between thermoelasticity and poroelasticity. At last, the numerical simulation of the elastic wave propagation in the two-phase isotropic media is carried out by using the boundary element method. The results show that a slow quasi P-wave can be seen in both solid and fluid wave-field synthetic seismograms. The boundary element method is effective and feasible.