69 resultados para Tin cation
Resumo:
Air-stable n-type field effect transistors were fabricated with an axially oxygen substituted metal phthalocyanine, tin (IV) phthalocyanine oxide (SnOPc), as active layers. The SnOPc thin films showed highly crystallinity on modified dielectric layer, and the electron field-effect mobility reached 0.44 cm(2) V-1 s(-1). After storage in air for 32 days, the mobility and on/off ratio did not obviously change. The above results also indicated that it is an effective approach of seeking n-type semiconductor by incorporating the appropriate metal connected with electron-withdrawing group into pi-pi conjugated system.
Resumo:
In this work, we report a simple approach for controllable synthesis of one-dimensional (ID) gold nanoparticle (AuNP) assemblies in solution. In the presence of divalent metallic ions, poly(acrylic acid)-1-dodecanethiol-stabilized AuNPs (PAA-DDT@AuNPs) are found to form I D assemblies in aqueous solution by an ion-templated chelation process; this causes an easily measurable change in the absorption spectrum of the particles. The assemblies are very stable and remain suspended in solution for more than one month without significant aggregation.
Resumo:
Self-assembled monolayers (SAMs) of a series of p-substituted benzoyl chlorides were formed on indium tin oxide as the cathode for the fabrication of inverted bottom-emitting organic light-emitting diodes (IBOLEDs). The studies on the efficiency of electron injection and device performances showed that the direct tunneling of electron and the formation of dipole associated with the monolayer-forming molecule lead to significant enhancement in electron injection. Consequently, the device efficiency is greatly improved.
Resumo:
Phthalocyanato tin(IV) dichloride, an axially dichloriniated MPc, is an air-stable high performance n-type organic semiconductor with a field-effect electron mobility of up to 0.30 cm(2) V-1 s(-1). This high mobility together with good device stability and commercial availability makes it a most suitable n-type material for future organic thin-film transistor applications.
Resumo:
Porous SnO2 and SnO2-Eu3+ nanorods have been facilely prepared using triphenyltin hydroxide microrods as precursors. The porous structure of SnO2 nanorods, which was aggregated by small SnO2 nanocrystallites, has been confirmed by TEM images and nitrogen adsorption-desorption isotherms. The optical property of the porous SnO2-Eu3+ nanorods was investigated by UV-vis absorption and photoluminescence spectra.
Resumo:
We report a simple method for novel flower-like In4SnS8 nanostructure synthesis. A flower-like In4SnS8 nanostructure was synthesized via a one-pot hydrothermal route using the biomolecule L-cysteine as a sulfur source. The structure was characterized using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption analysis and photoluminescence spectra. This flower-like structure consists of crosslinked nanoflakes and possesses good thermostability and a high BET surface area.
Resumo:
The title compound, {[Mn(C10H28N6)][Sn3Se7]}(n), consists of anionic (infinity){[Sn3Se7](2-)} layers interspersed by [Mn(peha)](2+) complex cations ( peha is pentaethylenehexamine). Pseudo-cubic (Sn3Se4) cluster units within each layer are held together to form a 6(3) net with a hole size of 8.74 x 13.87 angstrom. Weak N-H center dot center dot center dot Se interactions between the host inorganic frameworks and metal complexes extend the components into a three-dimensional network. The incorporation of metal complexes into the flexible anion layer dictates the distortion of the holes.
Resumo:
A Ru(bpy)(3)(2+)-doped silica nanoparticle-[Ru@Silica] modified indium tin oxide electrode was prepared by simple electrostatic self-assembly technique, and one-electron catalytic oxidation of guanine bases in double-strand and denatured DNA was realized using the electrochemiluminescence detection means.
Resumo:
An approach was reported to synthesize silica hybridized ruthenium bipyridyl complex through amidation reaction by covalent attachment of bis(bipyridyl)-4,4'-dicarboxy-2,2'-bipyridyl-ruthenium to (3-aminopropyl)-triethoxysilane. The hybrid complex then was gelatinized through acid catalytic hydrolysis method and a sol-gel modified indium, tin oxide electrode was prepared via spin coating technique. As prepared indium tin oxide electrode possesses good stability therein with excellent electrochemiluminescence behavior.
Resumo:
We initially report an electrochemical sensing platform based on molecularly imprinted polymers (MIPs) at functionalized Indium Tin Oxide Electrodes (ITO). In this research, aminopropyl-derivatized organosilane aminopropyltriethoxysilane (APTES), which plays the role of functional monomers for template recognition, was firstly self-assembled on an ITO electrode and then dopamine-imprinted sol was spin-coated on the modified surface. APTES which can interact with template dopamine (DA) through hydrogen bonds brought more binding sites located closely to the surface of the ITO electrode, thus made the prepared sensor more sensitive for DA detection. Potential scanning is presented to extract DA from the modified film, thus DA can rapidly and completely leach out. The affinity and selectivity of the resulting biomimetic sensor were characterized using cyclic voltammetry (CV). It exhibited an increased affinity for DA over that of structurally related molecules, the anodic current for DA oxidation depended on the concentration of DA in the linear range from 2 x 10(-6) M to 0.8 x 10(-3) M with a correlation coefficient of 0.9927.In contrast, DA-templated film prepared under identical conditions on a bare ITO showed obviously lower response toward dopamine in solution.
Resumo:
In this article, an antibiotic, lincomycin was determined in the urine sample by microchip capillary electrophoresis (CE) with integrated indium tin oxide (ITO) working electrode based on electrochemiluminescence (ECL) detection. This microchip CE-ECL system can be used for the rapid analysis of lincomycin within 40 s. Under the optimized conditions, the linear range was obtained from 5 to 100 muM with correlation coefficient of 0.998. The limit of detection (LOD) of 3.1 muM was obtained for lincomycin in the standard solution. We also applied this method to analyzing lincomycin in the urine matrix. The limit of detection of 9.0 muM was obtained. This method can determine lincomycin in the urine sample without pretreatment, which demonstrated that it is a promising method of detection of lincomycin in clinical and pharmaceutical area.
Resumo:
The transfer of sodium cation facilitated by (anthraquinone-1-yloxy) methane-15-crown-5(L) has been investigated at the water/1,2-dichloroethane microinterface supported at the tip of a micropipette. The diffusion coefficient of (anthraquinone-1-yloxy) methane-15-crown-5 obtained was (3.42 +/- 0.20) x 10(-6) cm(2) s(-1). The steady-state voltammograms were observed for forward and backward scans due to sodium ion transfer facilitated by L with 1:1 stoichiometry. The mechanism corresponded to an interfacial complexation (TIC) and interfacial dissociation (TID) process. The association constant was calculated to be log beta(o) = 11.08 +/- 0.03 in the DCE phase. The association constant of other alkali metals (Li+, K+, Rb+) were also obtained.
Resumo:
In this paper, a simple method of preparing {SiO2/Ru-(bPY)(3)(2+)}(n) multilayer films was described. Positively charged tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3)(2+)) and negatively charged SiO2 nanoparticles were assembled on ITO electrodes by a layer-by-layer method. Electrochemical and electrogenerated chemiluminescence (ECL) behaviors of the {SiO2/Ru(bpy)(3)(2+)}(n) multilayer film-modified electrodes were studied. Cyclic voltammetry, UV-visible spectroscopy, quartz crystal microbalance, and ECL were adopted to monitor the regular growth of the multilayer films. The multilayer films containing Ru(bpy)(3)(2+) was used for ECL determination of TPA, and the sensitivity was more than 1 order of magnitude higher than that observed for previous reported immobilization methods for the determination of TPA. The multilayer films also showed better stability for one month at least. The high sensitivity and stability mainly resulted from the high surface area and special structure of the silica nanoparticles.
Resumo:
A novel room temperature ionic liquid (RTIL) has been prepared containing a cyclic hexaalkylguanidinium cation. The selective oxidation of a series of substituted benzyl alcohols has been carried out in it, with sodium hypochlorite as the oxidant. The RTIL acts as both phase transfer catalyst (PTC) and solvent. The ionic liquid could be recycled after extraction of the benzaldehyde product with ether.
Resumo:
The nucleophilic displacement reaction of n-bromooctane and potassium iodide in ionic liquid based on cyclic guanidinium cation(2) was investigated. The kinetic reasult shows that the rate of the reaction is enhanced in ionic liquid (2). The same reaction in [bmim][PF6](1)(where bmim = 1-butyl-3-methylimidazolium) was also studied. It was found that as a reaction medium ionic liquid (2) is better than (1) for nucelophilic displacement reactions.