82 resultados para Thermogravimetric Analysis (TGA)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fe-Co/CoFe2O4 nanocomposite and CoFe2O4 nanopowders were prepared by the hydrothermal method. The structure of magnetic powders were characterized by X-ray diffraction diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermal gravity analysis (TGA) and differential thermal analysis (DTA) analysis, X-ray photoelectron spectrometry (XPS), and Fourier transform infrared spectra (FTIR) techniques, while magnetic properties were determined by using a vibrating sample magnetometer (VSM) at room temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Opened hollow microspheres of organoclays were prepared via spray drying the suspension of modified Na+-montmorillonite (Na+-MMT) with alkylsulfonate. The microstructure and thermal properties of these opened hollow spheres were characterized by means of wide-angle X-ray diffraction, field emission scanning electron microscopy, and thermogravimetric analysis. The results showed that the organoclays had larger interlayer spacing compared with pure Na+-MMT and higher thermal stability relative to the alkylsufonate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A green one-step approach has been developed for the synthesis of amino-functionalized magnetite nanoparticles. The synthesis was accomplished by simply mixing FeCl2 with arginine under ambient conditions. It was found that the Fe2+/arginine molar ratio, reaction duration and temperature greatly influence the size, morphology and composition of magnetic nanoparticles. The arginine-stabilized magnetic nanoparticles were characterized by transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

By reducing the attraction between the platelets of octaclecylammonium chloride modified montmorillonite (OMMT-C18) via pre-intercalation of maleated polypropylene (MAPP), OMMT-C18 was exfoliated in thermoplastic polyurethane (TPU) matrix during melt-mixing. Wide angle X-ray diffraction, transmission electron microscopy and thermogravimetric analysis were used to investigate the microstructure of TPU nanocomposites. Three factors (including introducing sequence, the kind and the content of MAPP) showed important effects on the dispersion degree of OMMT-C18 in TPU matrix. The results confirmed that the pre-intercalation of MAPP was necessary for the exfoliation of OMMT-C18; however, the role of MAPP in TPU nanocomposites was different from that in polypropylene nanocomposites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Four aromatic tetraamine monomers possessing flexible ether linkages were successfully synthesized by nucleophilic aromatic substitution of hydroquinone, 4,4'-dihydroxybiphenyl, 2,2'-bis(4-hydroxyphenyl)propane, and 2,7-dihydroxynaphthalene with 5-chloro-2-nitroaniline, followed by reduction, respectively. With these monomers, a new class of soluble poly[ bis(benzimidazobenzisoquinolinones)] was prepared by a one-step, high-temperature solution polycondensation. The resulting polymers were completely soluble in phenolic solvents and had high inherent viscosities ranging from 1.2 to 1.5 g dL(-1). These polymers had glass transition temperatures in the range of 427-449 degrees C. Thermogravimetric analysis showed that all polymers were thermally stable, with 5% weight loss recorded above 510 degrees C in nitrogen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The surface modification of hydroxyapatite (HA) nanoparticles by the ring opening polymerization (ROP) of gamma-benzyl-L-glutamate N-carboxyanhydride (BLG-NCA) was proposed to prepare the poly(gamma-benzyl-L-glutamate) (PBLG)-grafted HA nanoparticles (PBLG-g-HA) for the first time. HA nanoparticles were firstly treated by 3-aminopropylthriethoxysilane (APS) and then the terminal amino groups of the modified HA particles initiated the ROP of BLG-NCA to obtain PBLG-g-HA. The process was monitored by XPS and FT-IR. The surface grafting amounts of PBLG on HA ranging from 12.1 to 43.1% were characterized by thermal gravimetric analysis (TGA). The powder X-ray diffraction (XRD) analysis confirmed that the ROP only underwent on the surface of HA nanoparticles without changing its bulk properties. The SEM measurement showed that the PBLG-g-HA hybrid could form an interpenetrating net structure in the self-assembly process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ionic liquid monomer 1-vinyl-3-ethylimidazolium bromide (ViEtIM(+)Br(-)) was first used to copolymerize with acrylonitrile (AN) successfully under various conditions. This was achieved with azobisisobutyronitrile as the initiator and dimethyl sulfoxide as the solvent. The kinetics of this copolymerization were studied. The values of the monomer apparent reactivity ratios were calculated by the Kelen-Tudos method. The apparent reactivity ratios of ViEtIM(+)Br(-) (r(ViEtIM+Br-)) and AN (r(AN)) were similar at polymerization conversions of less than 10%, (r(AN) = 0.954, r(ViEtIM+Br-) = 0.976). The copolymers were obtained with high molecular weights and high hydrophilicides. The copolymers were characterized by H-1-NMR, differential scanning calorimetry, and thermogravimetric analysis. These copolymers may be potentially useful in the preparation of precursor fibers and carbon fibers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Uniform Lu2O3:Eu3+ nanorods and nanowires have been successfully prepared through a simple solution-based hydrothermal process followed by a subsequent calcination process without using any surfactant, catalyst, or template. On the basis of X-ray diffraction, thermogravimetric analysis and differential scanning calorimetry, and Fourier transform infrared spectroscopy results, it can be assumed that the as-obtained precursors have the structure formula of Lu4O(OH)(9)(NO3), which is a new phase and has not been reported. The morphology of the precursors could be modulated from nanorods to nanowires with the increase of pH value using ammonia solution. The as-formed precursors could transform to cubic Lu2O3:Eu3+ with the same morphology and a slight shrinkage in size after an annealing process, Both the Lu2O3:Eu3+ nanorods and nanowires exhibit the strong red emission corresponding to the D-5(0)-F-7(2) transition of the Eu3+ ions under UV light excitation or low-voltage electron beam excitation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Poly(epsilon-caprolactone) was crosslinked by gamma radiation in the presence of triallyl isocyanurate. The influence of gamma-radiation crosslinking on the thermal and mechanical properties of poly(epsilon-caprolactone)/triallyl isocyanurate was investigated. Differential scanning calorimetry analyses showed differences between the first and second scans. Dynamic mechanical analysis showed an increase in the glass-transition temperature as a result of the radiation crosslinking of poly(epsilon-caprolactone). Thermogravimetric analysis showed that gamma-radiation crosslinking slightly improved the thermal stability of poly(epsilon-caprolactone). The 7 radiation also strongly influenced the mechanical properties. At room temperature, crosslinking by radiation did not have a significant influence on the Young's modulus and yield stress of poly(E-caprolactone). However, the tensile strength at break and the elongation at break generally decreased with an increase in the crosslinking level. When the temperature was increased above the melting point, the tensile strength at break, elongation at break, and Young's modulus of poly(epsilon-caprolactone) were also reduced with an increase in the crosslinking level. The yield stress disappeared as a result of the disappearance of the crystallites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Syndiotactic 1,2-polybutadiene/organoclay nanocomposites were prepared and characterized by thermogravimetry analysis (TGA), X-ray diffraction (XRD), polarized optical microscopy (POM), and differential scanning calorimetry (DSC), respectively. The XRD shows that exfoliated nanocomposites are formed dominantly at lower clay concentrations (less than 2%), at higher clay contents intercalated nanocomposites dominate. At the same time, the XRD indicates that the crystal structures of sPB formed in the sPB/organoclay nanocomposites do not vary, only the relative intensity of the peaks corresponding to (0 1 0) and (2 0 0)/(1 1 0) crystal planes, respectively, varies. The DSC and POM indicate that organoclay layers can improve cooling crystallization temperature, crystallization rate and reducing the spherulite sizes of sPB. TGA shows that under argon flow the nanocomposites exhibit slight decrease of thermal stability, while under oxygen flow the resistance of oxidation and thermal stability of sPB/organoclay nanocomposites were significantly improved relative to pristine sPB. The primary and secondary crystallization for pristine sPB and sPB/organoclay (2%) nanocomposites were analyzed and compared based on different approaches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two novel bis(amine anhydride)s, NN-bis(3,4-dicarboxyphenyl)aniline dianhydride (I) and N,N-bis(3,4-dicarboxyphenyl)-p-tert-butylaniline (II), were synthesized from the palladium-catalyzed amination reaction of N-methyl-protected 4-chlorophthalic anhydride with arylamines, followed by alkaline hydrolysis of the intermediate bis(amine-phthalimide)s and subsequent dehydration of the resulting tetraacids. The X-ray structures of anhydride I and II were determined. The obtained dianhydride monomers were reacted with various aromatic diamines to produce a series of novel polyimides. Because of the incorporation of bulky, propeller-shaped triphenylamine units along the polymer backbone, all polyimides exhibited good solubility in many aprotic solvents while maintaining their high thermal properties. These polymers had glass transition temperatures in the range of 298-408 degrees C. Thermogravimetric analysis showed that all polymers were stable, with 10% weight loss recorded above 525 degrees C in nitrogen.The tough polymer films, obtained by casting from solution, had tensile strength, elongation at break, and tensile modulus values in the range of 95-164 MPa, 8.8-15.7%, and 1.3-2.2 GPa, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nano-hydroxyapatite (HA)/poly(L-lactide) (PLLA) composite microspheres with relatively uniform size distribution were prepared by a solid-in-oil-in-water (s/o/w) emusion solvent evaporation method. The encapsulation of the HA nanopaticles in microshperes was significantly improved by grafting PLLA on the surface of the HA nanoparticles (p-HA) during emulsion process. This procedure gave a possibility to obtain p-HA/PLLA composite microspheres with uniform morphology and the encapsulated p-HA nanoparticle loading reached up to 40 wt% (33 wt% of pure HA) in the p-HA/PLLA composite microspheres. The microstructure of composite microspheres from core-shell to single phase changed with the variation of p-HA to PLLA ratios. p-HA/PLLA composite microspheres with the diameter range of 2-3 mu m were obtained. The entrapment efficiency of p-HA in microspheres could high up to 90 wt% and that of HA was only 13 wt%. Surface and bulk characterizations of the composite microspheres were performed by measurements such as wide angle X-ray diffraction (WAXD), thermal gravimetric analysis (TGA), environmental scanning electron microscope (ESEM) and transmission electron microscopy (TEM).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A family of supramolecular polymers was prepared via Cd2+-directed self-assembly polymerization of his (2,2':6',2 ''-terpyridine)-based ligand monomers, using oligofluorenes and triphenylamine as bridges under mild conditions. The polymers were fully characterized using thermogravimetric analysis, inherent viscosity, electrochemical measurements, UV-visible spectroscopy, photoluminescence (PL) and electroluminescence (EL). Polymers with oligofluorenes as spacers exhibited blue emission (434-442 nm) in dimethyl acetamide (DMAc) solution, while polymers with triphenylamine as spacer presented an emission peak at 494 nn in DMAc solution. Complexation polymerization of bis(2,2':6',2 ''-terpyridine)-based ligand monomers with cadmium(II) improved fluorescence quantum yields dramatically, and the film PL quantum yields of these polymers were about 0.38-0.54. Single-layer light-emitting diodes were fabricated with the configuration indium tin oxide (ITO)/polymer/Ca/Al; the EL showed green emission and the onset voltages of the devices were 8-11 V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyethylene (PE) chains grafted onto the sidewalls of SWCNTs (SWCNT-g-PE) were successfully synthesized via ethylene copolymerization with functionalized single-walled carbon nanotubes (f-SWCNTs) catalyzed by rac-(en)(THInd)(2)ZrCl2/ MAO. Here f-SWCNTs, in which alpha-alkene groups were chemically linked on the sidewalls of SWCNTs, were synthesized by Prato reaction. The composition and microstructure of SWCNT-g-PE were characterized by means of H-1 NMR, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analyses (TGA), field-emission scanning electron microscope (FESEM), and transmission electron microscope (TEM). Nanosized cable-like structure was formed in the SWCNT-g-PE, in which the PE formed a tubular shell and several SWCNTs bundles existed as core. The formation of the above morphology in the SWCNT-g-PE resulted from successfully grafting of PE chains onto the surface of SWCNTs via copolymerization. The grown PE chains grafted onto the sidewall of the f-SWCNTs promoted the exfoliation of the mass nanotubes. Comparing with pure PE, the physical mixture of PE/f-SWCNTs and in situ PE/SWCNTs mixture, thermal stability, and mechanical properties of SWCNT-g-PE were higher because of the chemical bonding between the f-SWCNTs and PE chains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyelectrolyte complexes (PECs) were prepared by mixing aqueous solutions of chitosan (CS) and poly(L-glutamic acid) (PLGA) at various pH. It was found that the stoichiometry of the PECs depends on pH.An investigation of the PECs using Fourier transform infrared spectroscopy proved that the formation of the complexes is due to electrostatic interaction between –NH3 + groups of CS and –COO− groups of PLGA. The solid PECs were characterized using wide-angle X-ray diffraction, which suggested that a strong interaction occurs between the two polymers at pH = 4 or 5 and relatively weak interaction at pH = 3. These results were further confirmed by thermogravimetric analysis data. Transmission electron microscopy showed that the complexes have a spherical shape. The effect of ionic strength on the size of the PECs was also studied using dynamic light scattering. It was found that the size of the PECs is dependent on pH.