132 resultados para Tensile properties.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exploratory experiments of laser welding cast Ni-based superalloy K418 turbo disk and alloy steel 42CrMo shaft were conducted. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness and tensile strength testing. The corresponding mechanisms were discussed in detail. Results showed that the laser-welded seam had non-equilibrium solidified microstructures consisting of FeCr0.29Ni0.16C0.06 austenite solid solution dendrites as the dominant and some fine and dispersed Ni3Al gamma' phase and Laves particles as well as little amount of MC short stick or particle-like carbides distributed in the interdendritic regions. The average microhardness of the welded seam was relatively uniform and lower than that of the base metal due to partial dissolution and suppression of the strengthening phase gamma' to some extent. About 88.5% tensile strength of the base metal was achieved in the welded joint because of a non-full penetration welding and the fracture mechanism was a mixture of ductility and brittleness. The existence of some Laves particles in the welded seam also facilitated the initiation and propagation of the microcracks and microvoids and hence, the detrimental effects of the tensile strength of the welded joint. The present results stimulate further investigation on this field. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experiments of autogenous laser full penetration welding between dissimilar cast Ni-based superalloy K418 and alloy steel 42CrMo flat plates with 3.5 mm thickness were conducted using a 3 kW continuous wave (CW) Nd:YAG laser. The influences of laser welding velocity, flow rate of side-blow shielding gas, defocusing distance were investigated. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness and tensile strength testing. Results show that high quality full penetration laser-welded joint can be obtained by optimizing the welding velocity, flow rate of shielding gas and defocusing distance. The laser-welded seam have non-equilibrium solidified microstructures consisting of gamma-FeCr0.29Ni0.16C0.06 austenite solid solution dendrites as the dominant and very small amount of super-fine dispersed Ni3Al gamma' phase and Laves particles as well as MC needle-like carbides distributed in the interdendritic regions. Although the microhardness of the laser-welded seam was lower than that of the base metal, the strength of the joint was equal to that of the base metal and the fracture mechanism showed fine ductility. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymer bonded explosives (PBXs) are highly particle filled composite materials comprised of explosive crystals and a polymeric binder (ca. 5-10% by weight). The microstructure and mechanical properties of two pressed PBXs with different binder systems were studied in this paper. The initial microstructure of the pressed PBXs and its evolution under different mechanical aggressions were studied, including quasi-static tension and compression, ultrasonic wave stressing and long-pulse low-velocity impact. Real-time microscopic observation of the PBXs under tension was conducted by using a scanning electron microscope equipped with a loading stage. The mechanical properties under tensile creep, quasi-static tension and compression were studied. The Brazilian test, or diametrical compression, was used to study the tensile properties. The influences of pressing pressures and temperatures, and strain rates on the mechanical properties of PBXs were analyzed. The mesoscale damage modes in initial pressed samples and the samples insulted by different mechanical aggressions, and the corresponding failure mechanisms of the PBXs under different loading conditions were analyzed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

为探寻共面双线断续节理岩体平面应力条件下的拉伸特性,从远场应力角度出发,基于Fazil Erdogan(1962)在任意荷载条件下共线双裂纹的应力场分布思想,采用G.C.Sih(1972)提出的最小应变能密度因子判据(S判据),建立了远场应力与裂纹尖端附近应力场的对应关系,证明共线双裂纹在拉应力作用下自相似扩展;裂纹外侧与内侧的应力场分布形式相同,但数值偏小,且内侧裂纹先于外侧裂纹扩展;在材料性质、裂纹间距及长度已知的情况下,可反推材料破坏时的极限外力大小。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biodegradable poly(e-caprolactone) (PCL) foams with a series of controlled structures were prepared by using chemical foaming method. The cell morphology was detected by scanning electron microscope (SEM). The compressive behavior of the foams was investigated by uniaxial compression test. The effect of density and structural parameters on the foam compressive behavior was analyzed. It was found that the relative compressive modulus has a power law relationship with relative density. Increasing of both the cell wall thickness and the cell density lead to higher compressive modulus of the foam; however, the cell size has no distinct effect on compressive behavior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single phase WxAl(50)Mo(50)-X (X=40, 30, 20 and 10) powders have been synthesized directly by mechanical alloying (MA). The structural evolutions during MA and subsequent as-milled powders by annealing at 1400 degrees C have been analyzed using X-ray diffraction (XRD). Different from the Mo50Al50 alloy, W40Al50Mo10 and W30Al50Mo20 alloys were stable at 1400 degrees C under vacuum. The results of high-pressure sintering indicated that the microhardnesses of two compositions, namely W40Al50Mo10 and W30Al50Mo20 alloys have higher values compared with W50Al50 alloy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Notch Izod impact strength of poly(propylene) (PP)/glass bead blends was studied as a function of temperature. The results indicated that the toughness for various blends could undergo a brittle-ductile transition (BDT) with increasing temperature. The BDT temperature (T-BD) decreased with increasing glass bead content. Introducing the interparticle distance (ID) concept into the study, it was found that the critical interparticle distance (IDc) reduced with increasing test temperature correspondingly. The static tensile tests showed that the Young's modulus of the blends decreased slightly first and thereafter increased with increasing glass bead content. However, the yield stress decreased considerably with the increase in glass bead content. Dynamic mechanical analysis (DMA) measurements revealed that the heat-deflection temperature of the PP could be much improved by the incorporation of glass beads. Moreover, the glass transition temperature (T-g) increased obviously with increasing glass beads content. Differential scanning calorimetry (DSC) results implied that the addition of glass beads could change the crystallinity as well as the melting temperature of the PP slightly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was irradiated by Co-60 gamma-rays (doses of 50, 100 and 200kGy) under vacuum. The thermal analysis of control and irradiated PHBV, under vacuum was carried out by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The tensile properties of control and irradiated PHBV were examined by using an Instron tensile testing machine. In the thermal degradation of control and irradiated PHBV, a one-step weight loss was observed. The derivative thermogravimetric curves of control and irradiated PHBV confirmed only one weight-loss step change. The onset degradation temperature (T-o) and the temperature of maximum weight-loss rate (T-p) of control and irradiated PHBV were in line with the heating rate (degreesC min(-1)). T-o and T-p of PHBV decreased with increasing radiation dose at the same heating rate. The DSC results showed that Co-60 gamma-radiation significantly affected the thermal properties of PHBV. With increasing radiation dose, the melting temperature (T-m) of PHBV shifted to a lower value, due to the decrease in crystal size. The tensile strength and fracture strain of the irradiated PHBV decreased, hence indicating an increased brittleness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To study the brittle-ductile transition (BDT) of polypropylene (PP)/ethylene-propylene-diene monomer (EPDM) blends induced by size, temperature, and time, the toughness of the PP/EPDM blends was investigated over wide ranges of EPDM content, temperature, and strain rate. The toughness of the blends was determined from the tensile fracture energy of the side-edge notched samples. The concept of interparticle distance (ID) was introduced into this study to probe the size effect on the BDT of PP/EPDM blends, whereas the effect of time corresponded to that of strain rate. The BDT induced by size, temperature, and time was observed in the fracture energy versus ID, temperature, and strain rate. The critical BDT temperatures for various EPDM contents at different initial strain rates were obtained from these transitions. The critical interparticle distance (IDc) increased nonlinearly with increasing temperature, and when the initial strain rate was lower, the IDc was larger. Moreover, the variation of the reciprocal of the initial strain rate with the reciprocal of temperature followed different straight lines for various EPDM contents. These straight lines were with the same slope.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, blends of Nylon 6,6 with the liquid crystal polymer Vectra A950 are considered; specifically we focused our attention on Nylon 6,6 modifications by interchange reactions that can occur in the melt, as a function of mixing conditions and blend compositions. Two matrix samples have been used, characterised by a slightly different relative amount of amine and carboxylic end groups, being the latter predominant in both cases. The dried polymers Nylon 6,6/Vectra, combined in weight ratios between 95/5 and 50/50, were subjected to reactive blending with different methods (single-screw extruder, Brabender, pyrex reactor). Pure Nylon samples have been also investigated as reference materials. The soluble Nylon 6,6-rich fraction of each blend was separated from the insoluble Vectra-rich one and used for molecular and spectroscopic characterisations. Thermal and morphological analyses, as well as testing of tensile properties, were carried out on the blends. Evidences of the occurrence of interchange reactions are given and the most probable ones are suggested. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new kind of monomers including aromatic spirodilactone-5, 5'-carboxy-7,7'-dioxo-2,2'-spirobi(benzo-[c]tetrahydrofuran) is synthesized from m-xylene and paraformaldehyde. It is converted to a series of polyamides and polyesters by means of low-temperature solution polycondensation and interfacial polycondensation. NMR and IR spectra, solubility, mechanical and thermal properties of all these polymers are investigated. The polymers have high glass transition temperatures and good thermal oxidative properties. All polyamides have high viscosity and good solubility in strong polar organic solvents such as DMSO, DMAc, DMF and NMP. All polyamides can be cast into transparent, flexible and tough films possessing good tensile properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The crystallization, dynamic mechanical properties, tensile properties and morphology features of polyamidel 1010(PA1010) blends with the high impact polystyrere (HIPS) and maleic anhydride (MA) grafted HIPS(HIPS-g-MA) were examined at a wide composition range. By comparison the PA1010/HIPS-g-MA and PA1010/HIPS binary blends, it was found that the size of the domains of HIPS-g-MA was much smaller than that of HIPS at the same compositions. It was found that the mechanical properties of PA1010/HIPS-g-MA blends were obviously higher than those of PA1010/HIPS blends. When the content of PA1010 is more than 50wt% in the blends, the crystallization temperatures, T-cs, of PA1010 increase with increasing the content of HIPS-g-MA. On the other hand, when the content of PA1010 in the blends is less than 35wt% the fraction crystallization is observed. The same result is not obtained for the blends of PA1010/HIPS. These behaviors could be attributed to the chemical interactions between the two components and good dispersion in PA1010/HIPS-g-MA blends.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Flexural fatigue tests were conducted on injection-molded short fiber composites, carbon fiber/poly(phenylene ether ketone) (PEK-C) and glass fiber/PEK-C (with addition of polyphenylene sulfide for improving adhesion between matrix and fibers), using four-point bending at stress ratio of 0.1. The fatigue behavior of these materials was presented. By comparing the S-N curves and analyzing the fracture surfaces of the two materials, the similarity and difference of the failure mechanisms in the two materials were discussed. It is shown that the flexural fatigue failure of the studied materials is governed by their respective tensile properties. The matrix yielding is main failure mechanism at high stress, while at lower stress the fatigue properties appear fiber and interface dominated. (C) 1997 John Wiley & Sons, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The miscibility and phase behavior of polysulfone (PSF) and poly(hydroxyether of bisphenol A) (phenoxy) with a series of copoly(ether ether ketone) (COPEEK), a random copolymer of poly(ether ether ketone) (PEEK), and phenolphthalein poly(ether ether ketone) (PEK-C) was studied using differential scanning calorimetry. A COPEEK copolymer containing 6 mol % ether ether ketone (EEK) repeat units is miscible with PSF, whereas copolymers containing 12 mol % EEK and more are not. COPEEK copolymers containing 6 and 12 mol % EEK are completely miscible with phenoxy, but those containing 24 mol % EEK and more are immiscible with phenoxy. Moreover, a copolymer containing 17 mol % EEK is partially miscible with phenoxy; the blends show two transitions in the midcomposition region and single transitions at either extreme. Two T(g)s were observed for the 50/50 blend of phenoxy with the copolymer containing 17 mol % EEK, whereas a single composition-dependent T-g appeared for all the other compositions. An FTIR study revealed that there exist hydrogen-bonding interactions between phenoxy and the copolymers. The strengths of the hydrogen-bonding interactions in the blends of the COPEEK copolymers containing 6 and 12 mol % EEK are the same as that in the phenoxy/PEK-C blend. However, for the blends of copolymers containing 17, 24, and 28 mol % EEK, the hydrogen-bonding interactions become increasingly unfavorable and the self-association of the hydroxyl groups of phenoxy is preferable as the content of EEK units in the copolymer increases. The observed miscibility was interpreted qualitatively in terms of the mean-field approach. (C) 1996 John Wiley & Sons, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tensile-strained GaAsP/GaInP single quantum well (QW) laser diode (I-D) structures have been grown by low-pressure metal organic chemical vapor deposition (LP-MOCVD) and related photoluminescence (PL) properties have been investigated in detail. The samples have the same well thickness of 16 nm but different P compositions in a GaAsP QW. Two peaks in room temperature (RT) PL spectra are observed for samples with a composition larger than 0.10. Temperature and excitation-power-dependent PL spectra have been measured for a sample with it P composition of 0.15. It is found that the two peaks have a 35 meV energy separation independent of temperature and only the low-energy peak exists below 85 K. Additionally, both peak intensities exhibit a monotonous increase as excitation power increases. Analyses indicate that the two peaks arise from the intrinsic-exciton recombination mechanisms of electron-heavy hole (e-hh) and electron-light hole (e-hh). A theoretical calculation based oil model-solid theory, taking, into account the spin-orbit splitting energy, shows good agreement with our experimental results. The temperature dependence of PL intensity ratio is well explained using the spontaneous emission theory for e-hh and e-hh transitions. front which the ratio can be characterized mainly by the energy separation between the fill and Ill states.