99 resultados para Steel-maker
Resumo:
A study has been made of the microstructure of the thermally assisted band in a low carbon ferrite-pearlite steel, resulting from high speed torsional testing with an average strain rate of about 1500 s−1. Metallographic examination showed that there are several fine shear bands distributed over a deformed region (the gauge length of the specimen). The width of these bands is estimated to be of the order of magnitude of 50 μm, and the spacing between them is roughly about 100 μm. Detailed scanning electron microscopy studies indicate that damage of the microstructure within the band is very apparent, as evidenced by microcrack initiation and coalescence along the shear deformation band. However, there is no evidence that the material in the band had become microcrystalline or non-crystalline.
Resumo:
Near threshold, mixed mode (I and II), fatigue crack growth occurs mainly by two mechanisms, coplanar (or shear) mode and branch (or tensile) mode. For a constant ratio of ΔKI/ΔKII the shear mode growth shows a self-arrest character and it would only start again when ΔKI and ΔKII are increased. Both shear crack growth and the early stages of tensile crack growth, are of a crystallographic nature; the fatigue crack proceeds along slip planes or grain boundaries. The appearance of the fracture surfaces suggest that the mechanism of crack extension is by developing slip band microcracks which join up to form a macrocrack. This process is thought to be assisted by the nature of the plastic deformation within the reversed plastic zone where high back stresses are set up by dislocation pile-ups against grain boundaries. The interaction of the crack tip stress field with that of the dislocation pile-ups leads to the formation of slip band microcracks and subsequent crack extension. The change from shear mode to tensile mode growth probably occurs when the maximum tensile stress and the microcrack density in the maximum tensile plane direction attain critical values.
Resumo:
Composite coatings were obtained on A3 steel by hot dipping aluminum(HAD) at 720 degreesC for 6 min and micro-plasma oxidation (MPO) in alkali electrolyte. The surface morphology, element distribution and interface structure of composite coatings were studied by means of XRD, SEM and EDS. The results show that the composite coatings obtained through HAD/MPO on A3 steel consist of four layers. From the surface to the substrate, the layer is loose Al2O3 ceramic, compact Al2O3 ceramic, At and FeAl intermetallic compound layer in turn. The adhesions among all the layers are strengthened because the ceramic layer formed at the At surface originally, FeAl intermetallic compound layer and substrate are combined in metallurgical form through mutual diffusion during HAD process. Initial experiment results disclose that the anti-corrosion performance and wear resistance of composite coating are obviously improved through HAD/MPO treatment.
Resumo:
Very-High-Cycle Fatigue (VHCF) test for a medium carbon structural steel (40Cr) has been performed and a stepwise S-N curve was obtained by employing cantilever-type rotary bending fatigue machine with hourglass shape specimen. The S-N curve was well explained as a combination of curves for surface-induced fracture and interior inclusion-induced fracture with fish-eye patterns. The morphology of the fish-eye pattern was illustrated in order to clarify subsurface crack initiation and propagation behavior.
Resumo:
In this paper, torsion fracture behavior of drawn pearlitic steel wires with different heat treatments was investigated. Samples with different heat treatments was investigated. Samples with different heat treatment conditions were subjected to torsion and tensile tests. The shear strain along the torsion sample after fracture was measured. Fracture surface of wires was examined by Scanning Electron Microscopy. In addition, the method of Differential Scanning Calorimetry was used to characterize the thermodynamic process in the heat treatment. A numerical simulation via finite element method on temperature field evolution for the wire during heat treatment process was performed. The results show that both strain aging and recovery process occur in the material within the temperature range between room temperature and 435 degrees C. It was shown that the ductility measured by the number of twists drops at short heating times and recovers after further heating in the lead bath of 435 degrees C. On the other hand, the strenght of the wire increases at short heating times and decreases after further heating. The microstructure inhomogeneity due to short period of heat treatment, coupled with the gradient characteristics of shear deformation during torsion results in localized shear deformation of the wire. In this situation, shear cracks nucleate between lamella and the wire breaks with low number of twists.
Resumo:
In this paper, the mechanical behavior of 30CrMnSiA steel after heating at a high rate are investigated experimentally and theoretically, including a detailed discussion of the effects of strain rate and temperature. Two constitutive models are presented to describe the mechanical response of this material after heating at a high rate, and verified by experimental results. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Jacket platform is the most widely used offshore platform. Steel rubber vibration isolator and damping isolation system are often used to reduce or isolate the ice-induced and seismic-induced vibrations. The previous experimental and theoretical studies concern mostly with dynamic properties, vibration isolation schemes and vibration-reduction effectiveness analysis. In this paper, the experiments on steel rubber vibration isolator were carried out to investigate the compressive properties and fatigue properties in different low temperature conditions. The results may provide some guidelines for design of steel rubber vibration isolator for offshore platform in a cold environment, and for maintenance and replacement of steel rubber vibration isolator, and also for fatigue life assessment of the steel rubber vibration isolator. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Multi-track laser cladding is now applied commercially in a range of industries such as automotive, mining and aerospace due to its diversified potential for material processing. The knowledge of temperature, velocity and composition distribution history is essential for a better understanding of the process and subsequent microstructure evolution and properties. Numerical simulation not only helps to understand the complex physical phenomena and underlying principles involved in this process, but it can also be used in the process prediction and system control. The double-track coaxial laser cladding with H13 tool steel powder injection is simulated using a comprehensive three-dimensional model, based on the mass, momentum, energy conservation and solute transport equation. Some important physical phenomena, such as heat transfer, phase changes, mass addition and fluid flow, are taken into account in the calculation. The physical properties for a mixture of solid and liquid phase are defined by treating it as a continuum media. The velocity of the laser beam during the transition between two tracks is considered. The evolution of temperature and composition of different monitoring locations is simulated.
Resumo:
The successful application of boron-doped hydrogenated nanocrystalline silicon as window layer in a-Si: H nip solar cells on stainless steel foil with a thickness of 0.05 mm is reported. Open circuit voltage and fill factor of the fabricated solar cell were 0.90V and 0.70 respectively. The optical and structural properties of the p-layers have been investigated by using UV-VIS and Raman spectroscopy. It is confirmed that the p-layer is hydrogenated nanocrystalline silicon with a wide optical gap due to quantum size effect.
Resumo:
Stress corrosion studies of 50 Mn18Cr4 austenitic steel implanted with 120 keV N+, 100 keV Cr+, 200 keV and 400 keV Er+ ions were carried out by constant strain method in the nitrate solution. Surface composition and depth profiles of the implanted material were measured by AES sputter etching technique. The results exhibit that nitrogen implantation has no significant affection to the stress corrosion, but the chromium and erbium implantation has prolonged the incubation period of the stress corrosion cracking. (C) 1999 Kluwer Academic Publishers.
Resumo:
The corrosion inhibition behavior of benzotriazole, Na3PO4 and their mixture on carbon steel in 20 wt.% (0.628 mol l(-1)) tetra-n-butylammonium bromide aerated aqueous solution was investigated by weight-loss test, potentiodynamic polarization measurement, electrochemical impedance spectroscopy and scanning electron microscope/energy dispersive X-ray techniques. The inhibition action of BTA or SP or inhibitors mixture on the corrosion of carbon steel is mainly due to the inhibition of anodic process of corrosion. The results revealed that inhibitors mixtures have shown synergistic effects at lower concentration of inhibitors. At 2 g l(-1) BTA and 2 g l(-1) SP showed optimum enhanced inhibition compared with their individual effects.
Resumo:
Coupling with bionic principles, an attempt to improve the wear resistance of ball bearing steel (GCr15) with biomimetic units on the surface was made using a pulsed Nd: YAG laser. Air and water film was employed as processing medium, respectively. The microstructures of biomimeitc units were examined by scanning electron microscope and X-ray diffraction was used to describe the microstructure and identify the phases as functions of different mediums as well as water film with different thicknesses. The results indicated that the microstructure zones in the biomimetic specimens processed with water film were more refined and had better wear resistance increased by 55.8% in comparison with that processed in air; a significant improvement in microhardness was achieved by laser surface melting. The application of water film provided considerable microstructural changes and much more regular grain shape in biomimetic units, which played a key role in improving the wear resistance of ball bearing steel. (c) 2010 Elsevier B.V. All rights reserved.