84 resultados para Specific leaf area
Resumo:
通过大田玉米试验,验证新型土壤改良剂对夏玉米生育期土壤水分、紧实度及玉米生理生长特性的影响。结果表明,施用改良剂PJG和PFL夏玉米全生育期平均株高、叶面积分别高于对照20.7%、19.75%和51.88%、72.37%;2种改良剂对干物质积累的影响存在差异,影响效果依次为茎干重>叶干重>根干重。夏玉米光合速率和叶绿素含量受土壤改良剂影响较大,PJG和PFL分别高于对照29.96%、24.48%和73.36%、68.53%。在0~10 cm土层内,施用PJG和PFL后土壤紧实度分别低于对照44.44%和42.91%。施用改良剂PJG后,0~20 cm土层土壤含水量维持在田间持水量的77.9%左右,未施用改良剂土壤,夏玉米生育期表层土壤含水量起伏变化较大。土壤改良剂PJG在夏玉米的施用效果略好于PFL。
Resumo:
探讨全球气候变化的生物学和生态学效应是当今生态学中的热点,研究大气CO2浓度升高对植物-昆虫相互作用关系的影响具有重要的理论和实践意义。本文使用开顶式气室(Open-top chamber,OTC)在野外条件下研究了CO2浓度升高对三种树木(小青杨、白桦和蒙古栎)叶片化学成分含量的影响,以及树木叶片品质变化对一种广食性森林昆虫(舞毒蛾)幼虫取食、生长发育和取食偏嗜性的影响。得出如下结果:(1)CO2浓度升高对3个受试树种叶片中的营养成分及次生代谢物含量均有显著影响,总体表现为氮含量降低,而碳氮比、非结构性碳水化合物、总酚和缩合丹宁含量增加。叶片中的化学成分含量可随时间发生显著变化,不同树种、甚至同一树种不同冠层高度的叶片对CO2浓度升高的响应强度也是不同的。叶片的干物质含量和比叶重对CO2浓度升高的响应不显著。(2)室内非选择性取食实验、室内选择性取食实验以及上树取食饲养方式下的多龄期取食实验,均发现高浓度CO2处理组内舞毒蛾幼虫的生长发育受到显著抑制。但对四龄舞毒蛾幼虫所进行的短期生物测定并未发现不同CO2浓度处理下幼虫的生长发育速率、对食物的取食率和转化率等昆虫营养指标存在显著差异。(3)叶片品质的降低是导致舞毒蛾幼虫生长发育受抑制的主要原因。但是总体上,CO2浓度升高导致的叶片品质变化并未显著影响幼虫的取食率和取食量。(4)舞毒蛾幼虫对不同叶片种类表现出清晰的取食选择性,这种选择性在其幼龄期就可表现出来。幼虫对小青杨上层叶片有最显著的偏嗜性,对蒙古栎下层叶片有最明显的拒食性。但是CO2浓度升高导致的叶片品质变化对舞毒蛾幼虫的取食选择性和寄主偏嗜行为并未产生显著影响。(5)检测出高浓度CO2处理组内舞毒蛾幼虫虫粪中含有浓度更高的植物次生代谢物质(总酚和缩合单宁),这很可能是昆虫整体生长发育受抑制的重要原因之一。
Resumo:
花椒(Zanthoxylum bungeanum)是川西干旱河谷地区重要的经济作物,化感作用是花椒连作障碍的重要原因之一。花椒凋落物分解是影响花椒林地土壤肥力及花椒产量的重要因素,因此系统研究花椒化感作用是否对花椒凋落物的分解产生影响可以为解决花椒连作障碍导致的产量下降等问题提供科学的理论依据。本文通过室内模拟实验研究了花椒凋落物的四个分解动态以及分解后凋落物浸提液对花椒林地土壤性质的影响;通过野外盆栽实验研究了花椒凋落物浸提液对花椒幼苗的生长、花椒凋落物的质量及土壤性质的影响。最终从生理生化角度揭示了花椒的化感作用对凋落物分解的影响机理,为深入解决花椒连作障碍问题、对花椒凋落物采取有效的人工措施提供了科学的理论依据。主要的研究结果如下: 1. 室内分解实验证明,花椒凋落物在分解的60 d 内分解速率呈现由大到小的变化趋势,并且凋落物分解呈现明显的毒性动态。凋落物在分解的10 d、30 d 时,分解速率较大,30 d 以后分解速率显著降低。凋落物分解的10 d 左右酚酸释放量最大,此时凋落物的毒性最大,凋落物分解到10 d 以后,酚酸释放量逐渐减少,凋落物的毒性也逐渐减小。 2. 四个分解动态的花椒凋落物浸提液对土壤化学性质产生了显著的影响。花椒凋落物在分解的60 d 内,其浸提液使土壤pH值均显著的增加。分解0 d 的凋落物浸提液显著的降低了土壤铵态氮的含量,抑制了纤维素分解菌的生长;分解60 d 的凋落物浸提液显著的降低了土壤酚酸含量,增加了土壤有效磷的含量;分解30 d 和60 d 的凋落物浸提液均显著的促进了好气性纤维素分解菌的生长。这说明花椒凋落物在分解过程中呈现出明显的毒性动态:凋落物分解的初期毒性作用较大,随着分解的继续进行特别是在分解的30 d 以后,其毒性作用慢慢降低。 3. 花椒凋落物浸提液对花椒幼苗表现出明显的化感作用。不同浓度的浸提液对花椒幼苗地上及地下生物量、叶面积均产生了显著的抑制作用,并且随着浸提液浓度的升高抑制作用加强。凋落物浸提液对叶片厚度的影响较小,只有Y1对叶片厚度的生长抑制作用显著。 4. 花椒的化感作用改变了凋落物的质量,并对凋落物分解产生了显著的影响。对花椒幼苗用不同浓度的凋落物浸提液进行处理,Y1使凋落物有机碳含量、木质素含量、C/N、木质素/氮显著降低,纤维素含量显著升高;Y3使凋落物有机碳含量、木质素含量、C/N、木质素/氮显著升高。花椒凋落物质量的改变显著的影响了凋落物的分解,凋落物的分解速率大小依次为:Y1(10.15 a-1)> Y2(8.71 a-1)> CK(6.41 a-1)> Y3(5.08 a-1)。 5. 花椒的化感作用改变了土壤性质,并对凋落物分解产生了显著的影响。对花椒幼苗用不同浓度的凋落物浸提液处理的同时,也改变了土壤性质。不同浓度的凋落物浸提液显著的升高了土壤pH值、有机碳含量。各种浓度的凋落物浸提液对土壤多酚氧化酶的活性均起到了显著的促进作用。凋落物浸提液Y1对土壤纤维素分解酶的活性、细菌和真菌的生长也具有显著的促进作用。土壤性质的改变显著的影响了凋落物的分解,凋落物的分解速率大小依次为:Y1(10.30 a-1)>Y2(9.60 a-1)>CK(6.41 a-1)>Y3(6.29 a-1)。 6. 不论是凋落物质量发生改变还是土壤性质发生改变,在凋落物分解的整个过程中,C元素始终处于单调净释放的状态,并且C释放量与分解速率成显著的正相关,即凋落物分解越快,凋落物C释放量越大。凋落物分解过程中,均出现了酚酸大量释放的情况,并与凋落物分解速率成显著正相关。凋落物分解后的木质素含量、木质素/氮均增加,并且随着浸提液浓度的升高,凋落物木质素含量、木质素/氮升高。 Zanthoxylum bungeanum is an important economic crop in dry valley of the Minjiang river (Sichuan, Southwest China), but allelopathy is one of the important reasons for its continuous cropping. Zanthoxylum bungeanum litter decomposition affects Zanthoxylum bungeanum soil fertility and its output. So systemically investigate if allelopathy affects litter decomposition could provide the scientific methods to solve the problem of output fall caused by the continuous cropping. In this paper, the releasing dynamics of phenolic acid during Zanthoxylum bungeanum litter decomposition (0, 10, 30 and 60 days) and the effects of its aqueous extract on soil chemical properties were investigated via the laboratory study. Effects of Zanthoxylum bungeanum litter aqueous extract on the growth of young Zanthoxylum bungeanum seedlings, litter qualities and the soil qualities were investigated via the field study. Finally, we open out the action manner of Zanthoxylum bungeanum allelopathic effect on the litter decomposition, and provide the theoretical basis to solve the Zanthoxylum bungeanum continuous cropping. The main results showed that: 1. The laboratory litter decomposition experiment showed a trend of decomposition rate from large to small and an occurrence of phytotoxicity with clear dynamic patterns during Zanthoxylum bungeanum litter decomposition. The litter decomposition rate was larger at the tenth and 30th day during 60-day litter decomposition and gradually decreased after 30 days of litter decompostion. The releasing quantity of the litter phenolic acid was the highest at the tenth day, and here, the litter toxicity was the biggest. The releasing quantity of the litter phenolic acid gradually decreased after 10 days of litter decomposition, so the phytotoxicity of litter was gradually decreased with the litter decomposition. 2. The Zanthoxylum bungeanum litter aqueous extract after four decomposition stages had significantly effect on the soil chemical qualities. The pH value in soil was significantly increased in litter aqueous extract of four decomposition stages. The NH+4-N concentration was significantly decreased in soil amended with litter aqueous extract of 10-day decomposition which inhibited the growth of Aerobic cellulose-decomposer. The growth of soil Aerobic cellulose-decomposer was promoted by the litter aqueous extract of 30-day decomposition. Available phosphorus concentration was significantly increased and phenolic acid content was significantly decreased in soil amended with litter aqueous extract of 60-day decomposition which promoted the growth of Aerobic cellulose-decomposer. The study results showed an occurrence of phytotoxicity with clear dynamic patterns during Zanthoxylum bungeanum litter decomposition. The phytotoxicity of litter was the largest at the initial stage, but the phytotoxicity gradually decreased with the litter decomposition, especially after 30 days of decomposition. 3. The field study indicated that the Zanthoxylum bungeanum litter aqueous extract had significant allelopathic effects on the growth of young seedlings.Different concentration aqueous extract had signinficant inhibiting effects on biomass and leaf area of young seedlings. The inhibiting effect on the biomass strengthened with the litter aqueous extract concentration augment. Litter aqueous extracts had less effect on the leaf thickness, and only Y1 had significant inhibiting effect on the leaf thickness. 4. The Zanthoxylum bungeanum allelopathy had significant effect on the litter qualities and the litter decomposition. Treating the young Zanthoxylum bungeanum seedlings with different concentration of litter aqueous extracts, the leaf litter organic C, lignin, C/N and lignin/N all decreased and the cellulose content increased under Y1 treatment. The leaf litter organic C, lignin, C/N and lignin/N all increased under Y3 treatment. So the litter decomposition was significant affectded by the litter qualities, and the litter decomposition rate was Y1(10.15 a-1)> Y2(8.71 a-1) > CK(6.41 a-1) > Y3(5.08 a-1). 5. The Zanthoxylum bungeanum allelopathy had significant effect on the soil qualities and the litter decomposition. Treating the young Zanthoxylum bungeanum seedlings with different concentration of litter aqueous extracts, also changed the soil qualities. Different concentration of litter aqueous extracts had significant effects on the soil pH and organic C content. Every concentration of litter aqueous extracts accelerated the soil Polyphenol Oxidase activity and Y1 accelerated the soil Cellulase activity, the number of soil bacteria and fungi. So the litter decomposition was significant affected by the soil qualities, and the litter decomposition rate was Y1(10.30 a-1) > Y2 (9.60 a-1) >CK(6.41 a-1)>Y3(6.29 a-1)。 6. Whether the litter or soil qualities changed, the litter C element at the state of release at all times during the litter decomposition, and the release quantity increased with the decomposition rate augment. Litter released plentiful total penolics content during decomposition, and the release quantity had the positive correlation with the litter decomposition rate. The litter lignin content and the lignin/N all increased with the litter aqueous extracts concentration augment after litter decomposition.
Resumo:
青藏高原东缘的亚高山针叶林是长江上游重要的生态屏障,经过近六十年的采伐后,取而代之的是大量人工种植的云杉纯林。目前,这些人工林已经表现出树种单一,结构层次简单等生态问题,其物种多样性及生态效益与同地带天然林相比差距较明显。如何丰富该地区物种多样性,完善人工林生态系统的生态功能是一个十分重要的课题。林下植物是人工林群落的重要组成部分,对维持群落的生物多样性及完善生态系统功能具有明显的作用。因此,研究该地区人工针叶林的林下植被对不同生境的适应性对于理解人工林生态系统物种多样性的形成和维持机制都具有重要的意义。 本文以青藏高原东部亚高山针叶林的主要森林类型----云杉人工林为研究对象,选择林下11种具有不同喜光特性的常见植物,分别设置人工林林冠下及成熟林窗为研究样地,通过对各种植物叶片形态与物质分配特征、叶片解剖学特征、叶片光合生理特性、植物自然分布特征等方面的比较分析,研究林下植物对不同光生境的适应策略及其适应能力,揭示不同物种对人工林生境的适应共性,为西南亚高山地区植被恢复及人工林的经营管理提供科学依据。具体研究结果如下: 在叶片形态和物质分配特征方面:在林窗光生境中,11种林下植物叶片比叶重(LMA)显著高于林下光生境的同种植物。同时,林窗下生长的植物叶片叶片厚度及栅栏细胞长度显著增加,这是影响叶片比叶重变化的直接原因。而多数植物叶重比在两种生境中无明显变化。说明在长期适应自然生境之后,植物可能更多地采取调节叶片组织细胞水平(即叶片功能细胞形态)及叶片器官水平(即单个叶片形态)特征的策略来适应各类生境,而非整株水平上的叶片总比重的增减。 在叶片解剖结构特征方面:多数阔叶物种栅栏组织厚度(PT)、栅栏组织厚度/海绵组织厚度(PT/ST)、栅栏细胞层数及近半数种的气孔密度(SD)在林窗生境中更大或更多,而叶片表皮细胞厚度(UET、LET)气孔长径(SL)及海绵组织厚度(ST)受两种生境影响不大。喜光特性相似的物种在生境适应策略上具有一定的趋同性。 在光合生理特征方面:在林窗生境中多数种植物的最大光合速率(Amax)、暗呼吸速率(Rd)及喜光植物光补偿点(LCP)显著或极显著高于林内生境同种植物。且在同一生境条件下,多数深度耐荫植物比喜光及轻度喜光植物有稍低的Rd和LCP。各植物在林内低光生境中具有更大的内禀光能转化效率,并在中午12:00~14:00之间光强最大的时刻发生了的最深程度的光抑制。多数种能通过调节自身某种光合素含量或色素之间的比例来适应不同的光生境,即通过增加叶绿素含量或降低Chla/b值来适应林内弱光生境,通过提高类胡萝卜素含量或单位叶绿素的类胡萝卜素含量降低强光带来的伤害。绝大多数物种并不采取调节叶片C、N含量的策略来适应不同的光生境。总之,植物部分光合参数(Amax、Rd、LCP)受生境的影响与其自身喜光特性有关,但另一些参数(Fv/Fm日变化、色素含量及比例、叶氮相对含量)受生境影响与其自身喜光特性无明显关联。 在表型可塑性方面:在叶片各表型参数中,器官水平及细胞水平的形态特征参数平均可塑性大于整株水平形态和物质分配特征参数可塑性;叶片光合组织的可塑性大于非光合组织可塑性;反映植物光合能力的参数可塑性大于叶片色素含量参数可塑性。植物叶片形态和物质分配、解剖学特征参数平均可塑性大小与其自身喜光特性基本吻合,即喜光种及轻度耐荫种各参数可塑性最高,深度耐荫种可塑性最小,而这种规律并未在光合生理参数的可塑性大小上体现出来。但是叶片形态和物质分配参数、光合生理参数的平均可塑性水平却大于叶片解剖学参数。 在植物自然分布特征方面:喜光物种云杉幼苗及歪头菜在林内生境中分布密度明显降低,深度耐荫种疏花槭却恰恰相反,更多数物种(7种植物)在两种生境中密度变化趋势不明显。从分布格局来看,7种植物在两种生境中均为聚集分布,但聚集强度为林窗>林内;少数物种桦叶荚迷、直穗小檗、冰川茶藨、黄背勾儿茶在林窗中为聚集型,在林内生境中的分布型发生改变而成为随机型,说明光生境的差异能影响到植物种群的分布特征。但这种影响程度与植物自身的喜光特性无关,同时与各物种叶片表型平均可塑性的大小也无明显关联。 The subalpine coniferous forest area in eastern Qinghai-Tibet Plateau is important ecology-barrier of upriver Yangtze. In past sixty years, those forests had been cut down and replaced with a lot of spruce plantations. At now, there are many ecology problems presenting to us such as singleness species, simple configuration, lower species diversity and ecological benefit than natural forests at the same belt. How to restore the species diversity and enhance the eco-function of the plantations is a very important issue. The understory plants are important part of plantation community, which improved the bio-diversity and eco-function distinctly of forests. So, it is very significance to study the adaptation of understory plants to different environment in plantation, and this study would helping us to understand how plantations to develop and remain their biodiversity. This study was conducted in a 60a spruce plantation in Miyaluo located in western Sichuan, China, and spruce plantation is major types of subalpine coniferous forest in eastern Qinghai-Tibet Plateau. In this paper, the leaf morphological and biomass-distributed characteristics, the anatomical characteristics, the photosynthetic characteristics and the distribution patterns characteristics of eleven different light-requirement understory species grown in two different environments (forest gaps and underneath close canopy) were studied and compared. The purpose of this study was to analyze the adaptation of this forest understory plants, to show up the commonness of these different light-requirement understory species in light acclimation, and to provide some scientific reference to manage and restore the vegetation of subalpine plantation of southwest China. The results were as follows: The leaf morphological and biomass-distributed characteristics: These eleven species in forest gaps had significantly higher dry weight per leaf area (LMA) than those under close canopy. The palisade parenchyma cells of the broad-leaved species in gaps were significantly longer than those grown under the canopy, which been a directed factor for the change of leaf mass per unit area (LMA) in different environment. But the leaf weight ratio (LWR) of most plants species were not evidently changed by the contrasted environments in our study. It was shown the morphological characteristics changing been adopted as a strategy of light acclimation for plants wasn’t on whole plant level (leaf weight ratio) but cellular level (the function cells morphological characteristics) and organic level (the leaf morphological and biomass-distributed characteristics) mostly. The leaf anatomical characteristics: Most broad-leaved plants in gaps increased palisade parenchyma thickness (PT), the palisade parenchyma cell layers and the ratio of palisade to spongy parenchyma (PT/ST). So did as almost about half species in this study in stomatal density (SD). No significant differences in thickness of leaf epidermal cells (UET, LET), stomatal length (SL) and spongy parenchyma (ST) between two environments of most species were observed. The results suggested that species with light-requirement approximately had convergent evolution on adaptation to light condition. The leaf photosynthetic characteristics: The dark respiration rate (Rd) of most plants species, the light compensation point (LCP) of light-demanding plants species in gaps were significantly increased than under close canopy in this study. In a same habitat, most deep-shade-tolerant plants had lower Rd and LCP than those light-demanding plants and slight-shade-tolerant plants. Each species has bigger inherent electron transport rate under close canopy than in gaps, and the greatest photoinhibition happened during 12 to 14 in the daytime. Most species could adapt different light environment by the way of changing their photosynthetic pigments content or the ratio of pigments content. For example, some plants under close canopy increased chlorophyll (Chl) or reduced the values of the ratio Chla/b to adapted the low light condition, some plants in gaps increased carotenoid (Car) or reduced the weight ratio CarChl to avoid been hurt in high light. For most plants, changing the content of C and N in leaf wasn’t a strategy of light acclimation. In conclusion, the variation of some leaf photosynthetic parameters in different light environment such as Fv/Fm, pigments, C and N in leaf related with the light-requirmnet of species, but the others such as Amax, Rd, LCP did not. The leaf plasticity indexes: Among those leaf plasticity indexes, the leaf morphological and biomass-distributed parameters on cellular and organic level were greater than on whole plant level for same species, and the photosynthetic parenchyma parameters were greater than non-photosynthetic parenchyma parameters in same leaf, and photosynthetic capability parameters were greater than photosynthetic pigments content parameters for same species. The average plasticity indexes of leaf morphological and biomass-distributed and anatomical parameters were accordant with plants’ light-requirement approximately: those light-demanding plants and slight-shade-tolerant plants had bigger plasticity indexes than deep-shade-tolerant plants. But this regular wasn’t observed in physiological plasticity indexes for most plants, though the average leaf plasticity indexes of leaf morphological and biomass-distributed, photosynthetic characteristics parameters was greater than the anatomical characteristics parameters. The distribution patterns characteristics: Oppositely to the deep-shade-tolerant specie Acer laxiflorum Pax., the density of light-demanding species Picea asperata Mast. and Vicia unijuga A. Br. in gaps was bigger than under close canopy. Each of the other species has the approximately density in two different environment. The spatial patterns of seven species were aggregated distribution in two environments, but the trend of aggregation of population under close canopy was decrease from in gaps. A few species such as Viburnum betulifoium Batal., Berberis dasystachya Maxim., Ribes glaciale Wall. and Berchemia flavescens Brongn. were aggregated distribution in gaps while random distribution under close canopy. It was shown that the difference between two light environments could affect the distribution pattern of plant population, and the effect didn’t relate with the light-requirement or plasticity indexes of species.
Resumo:
在人类活动导致全球变暖的前提下,由于全球气温的升高,地表水分加速向空中蒸发。从20世纪70年代至今,地球上严重干旱地区的面积几乎扩大了一倍。这一增长的一半可归因于气温升高而不是降雨量下降,因为实际上同期全球平均降水量还略有增长。干旱对陆地植物和农林生态系统产生深远影响,并已成为全球变化研究的一个重要方面。位于青藏高原东部的川西亚高山针叶林是研究气候变暖对陆地生态系统影响的重要森林类型。森林采伐迹地、人工林下和林窗环境作为目前该区人工造林和森林更新的重要生境,其截然不同的光环境对亚高山针叶林更新和森林动态有非常重要的影响。凋落物产生的化感物质可通过影响种子萌发和早期幼苗的定居而影响种群的建立和更新,而人工林和自然林物种以及更新速度的差异性也都受凋落物的影响。 云杉是川西亚高山针叶林群落的重要树种之一,在维持亚高山森林的景观格局和区域生态安全方面具有十分重要的作用,其自然更新能力及其影响机制一直是研究的热点问题。本试验以云杉种子和2年生幼苗为研究对象,从萌发、根尖形态、幼苗生长、光合作用、渗透调节和抗氧化能力等方面研究了不同光环境下水分亏缺和凋落物水浸液对云杉种子和幼苗生长的影响。旨在从更新的角度探讨亚高山针叶林自然更新的过程,其研究成果可在一定程度上为川西亚高山针叶林更新提供科学依据,同时也可为林业生产管理提供科学指导。主要研究结论如下: 水分亏缺在生长形态、光合作用、抗氧化能力、活性氧化对云杉幼苗都有显著影响。总体表现为,水分亏缺导致了云杉幼苗的高度、地径、单株总生物量降低,增加了地下部分的生长;水分亏缺显著降低了云杉叶片中相对含水量、光合色素、叶氮含量,净光合速率和最大量子产量(Fv/Fm),提高了幼苗叶片中膜脂过氧化产物(MDA)的含量;水分亏缺提高了幼苗叶片中过氧化氢(H2O2)含量,超氧荫离子(O2-)生成速率以及脯氨酸和抗氧化系统的活性(ASA, SOD, CAT, POD, APX和GR)。从这些结果可知,植物在遭受水分亏缺导致的伤害时,其自身会形成防御策略,并通过改变形态和生理方面的特性以减轻害。但是,这种自我保护机制依然不能抵抗严重水分亏缺对植物的伤害。 模拟林下低光照条件显著增加单株植物的地上部分生长,尤其是其叶片的比叶面积(叶面积/叶干重),同时其光合色素含量和叶片相对含水量也显著增加,这些改变直接导致植株光合速率和生物量的增加。同时,与高光照水平相比,低光照幼苗的膜脂过氧化产物(MDA)和活性氧物质均较低,显示出低光照比高光照水平对植物的更低的氧化伤害。尽管低光照也导致大部分抗氧化酶活性降低,但这正显示出植物遭受低的氧化伤害,更印证了前面的结论。 凋落物水浸液影响了云杉种子的萌发和根系的生长,更在形态、光合作用、抗氧化能力、活性氧物质以及叶氮水平上显著影响了云杉幼苗,其中,以人工纯林凋落物的影响更有强烈。具体表现在,种子萌发速率和萌发种子幼根的长度表现为对照>自然林处理>人工纯林;凋落物水浸液抑制种子分生区和伸长区的生长,人工林处理更降低了根毛区的生长,使根吸水分和养分困难。对2年生幼苗的影响主要表现在叶绿素含量、光合速率以及叶氮含量的降低;膜脂过氧化产物、活性氧物质和抗氧化酶系统的显著增加。同样的,人工纯林处理对云杉幼苗的影响显著于自然林处理。 在自然生态系统中,由于全球变暖气温升高导致的水分亏缺和森林凋落物都存在森林的砍伐迹地,林窗和林下环境中。我们的研究表明,与迹地或林窗强光照比较,林下的低光照环境由于为植物的生长营造了较为湿润的微环境,因此水分亏缺在林下对云杉幼苗造成的影响微弱。这可以从植物的形态、光合速率以及生物量积累,过氧化伤害和抗氧化酶系统表现出来。另一方面,凋落物水浸液在模拟林下低光照环境对植物的伤害也微弱于强光照环境,这与强光照环境高的水分散失导致环境水分亏缺有关;而人工纯林处理对云杉幼苗的伤害比对照和自然林处理显示出强烈的抑制作用。 Under the pre-condition of global warming resulted from intensive human activities, water in the earth’s surface rapidly evaporates due to the increase of global air temperature. From 1970s up to now, the area of serious drought in the world is almost twice as ever. This increase might be due to the increasing air temperature and not decreasing rainfall because global average rainfall in the corresponding period slightly is incremental. Drought will have profound impacts on terrestrial and agriculture-forest system and has also become the important issue of global change research. The subalpine coniferous forests in the eastern Qinghai-Tibet Plateau provide a natural laboratory for the studying the effects of global warming on terrestrial ecosystems. The light environment significantly differs among cutting blanks, forest gap and understory, which is particularly important for plant regeneration and forest dynamics in the subalpine coniferous forests. Picea asperata is one of the keystone species of subalpine coniferouis forests in western China, and it is very important in preserving landscape structure and regional ecological security of subalpine forests. The natural regeneration capacities and influence mechanism of Picea asperata are always the hot topics. In the present study, the short-term effects of two light levels (100% of full sunlight and 15% of full sunlight), two watering regimes (100% of field capacity and 30% of field capacity), two litter aqueous extracts (primitive forest and plantation aqueous extracts) on the seed germination, early growth and physiological traits of Picea asperata were determined in the laboratory and natural greenhouse. The present study was undertaken so as to give a better understanding of the regeneration progress affected by water deficit, low light and litter aqueous extracts. Our results could provide insights into the effects of climate warming on community composition and regeneration behavior for the subalpine coniferous forest ecosystem processes, and provide scientific direction for the forest production and management. Water deficit had significant effects on growth, morphological, physiological and biochemical traits of Picea asperata seedlings. Water deficit resulted in the decrease in height, basal diameter, total biomass and increase in under-ground development; water deficit significantly reduced the needle relative water content, photosynthetic pigments, needle nitrogen concentration, net photosynthetic rate and the maximum potential quantum yield of photosynthesis (Fv/Fm), and increased the degree of lipid peroxidation (MDA) in Picea asperata seedlings; water deficit also increased the rate of superoxide radical (O2-) production, hydrogen peroxide (H2O2) content, free proline content and the activities of antioxidant systems (ASA, SOD, POD, CAT, APX and GR) in Picea asperata seedlings. These results indicated that some protective mechanism was formed when plants suffered from drought stress, but the protection could not counteract the harm resulting from the serious drought stress on them. Low light in the understory significantly increased seedling above-ground development, especially the species leaf area (SLA), and photosynthetic pigments and relative needle content. These changes resulted in the increase in net photosynthetic rate and total biomass. Moreover, the lower MDA content and active oxygen species (AOS) (H2O2 and O2-) in low light seedlings suggested that low light had weaker oxidative damage as compared to high light. Lower antioxidant enzymes activities in low light seedlings indicated the weaker oxidative damage on Picea asperata seedlings than high light seedlings, which was correlative with the changes in MDA and AOS. Litter aqueous extracts affected seed germination and root system of Picea asperata seedlings. Significant changes in growth, photosynthesis, antioxidant activities, active oxygen species and leaf nitrogen concentration were also found in Picea asperata seedlings, and plantation treatment showed the stronger effects on these traits than those in control and primitive forest treatment. The present results indicated that seed germination and radicle length parameters in control were superior to those in primitive forest treatment, and those of primitive forest treatment were superior to plantation treatment; litter aqueous extracts inhibited the meristematic and elongation zone, and plantation treatment caused a decrease in root hairs so as to be difficult in absorbing water and nutrient in root system. On the other hand, litter aqueous extracts significantly decreased chlorophyll content, net photosynthetic rate and leaf nitrogen concentration of Picea asperata seedlings; MDA, AOS and antioxidant system activities were significantly increased in Picea asperata seedlings. Similarly, plantation treatment had more significant effect on Picea asperata seedlings as compared to primitive forest treatment. In the nature ecosystem, water deficit resulted from elevating air temperature and litter aqueous extract may probably coexist in the cutting blank, forest gap and understory. Our present study showed that water deficit had weaker effects on low light seedlings in the understory as compared to high light seedlings in the cutting blank and forest gap. The fact was confirmed from seedlings growth, gas exchange and biomass accumulation, peroxidation and antioxidant systems. This might be due to that low light-reduced leaf and air temperatures, vapour-pressure deficit, and the oxidative stresses can aggravate the impact of drought under higher light. On the other hand, litter aqueous extracts in the low light had weaker effects on the Picea asperata seedlings than those at high light level, which might be correlative to the water evapotranspiration under high light. Moreover, plantation litter aqueous extracts showed stronger inhibition for seed germination and seedling growth than control and primitive forest treatments.
Resumo:
辐射传输研究是贯穿森林生态系统的纽带,太阳辐射为植物的生长发育提供光合能量、适宜的环境温度以及发育信息。一方面,气候变化使到达地面辐射能的质和量发生变化,影响到植被的生长发育,改变森林的结构,而森林结构的变化又会影响林冠内辐射能的分配和质量,这些变化会进一步影响到林下土壤温度,改变森林根系活性以及土壤营养转化的效率;连锁反应的结果有可能会使森林生态系统的生产力发生变化,改变碳素和氮素源库的调节方向,从而反馈影响地球气候系统。另一方面,人类作为生态系统的成员,必然需要森林生态系统为其提供更多的原材料和更好的生态服务功能,如何实现这些目标,就需要人类适度调整干预方式和频度,达到预期的目的。本文在建立适合于川西亚高山森林的叶面积测量技术、光照辐射模型和土壤温度变化模型的基础上,对川西亚高山地带森林生态系统的辐射传输特征进行了分析,并从森林结构的角度探讨了林分内的辐射分布以及对土壤温度的影响。主要成果如下: 1. 提出了一种照相法测量叶面积的方法。通过对摆放在平面上的叶片照相,利用投影变化,把非正射图像转化为正射图像,然后经过计算机图像处理得到每一片叶片的面积、周长、长度、宽度等信息。这种方法可使用户以任意方向和距离拍摄处于平面上的叶片,能同时处理大量的叶片,适于野外离体或活体叶片测量。叶片面积分辨率可调,分辨率可以与常用的激光叶面积仪相近甚至更高,而且叶片图像可以存档查询。 2. 提出一种模拟林内光照变化的模型。利用林冠半球照片,记录视点以上半球内的林冠构件空间分布,作为林冠子模型;天空辐射子模型采用国际照明委员会(CIE)的标准晴天和阴天以及插值模型。该模型能够模拟林下某一位点处的实时光斑变化。 3. 提出一种土壤温度变化模型。把土壤视为具有容量和阻力性质的结构,利用电阻和电容器件构建土壤能量分布模型。外界太阳辐射能经过植被以及其它一些能量分配器后进入土壤,其中有一部分转化为土壤势能,即土壤温度。土壤温度的变化类似于电池的充放电过程。在已知模型参数的情况下,可以从太阳辐射计算土壤温度的变化。在模型参数未知的情况下,通过输入和输出值推算模型的参数,而模型参数中的时间常数与土壤组成和含水量有关,这样就可以知道土壤水分的变化情况。 4. 从王朗亚高山森林典型样地林分结构的测量获得林地三维结构图、树冠形态、叶面积密度等参数,这些参数输入到Brunner (1998)开发的tRAYci 模型中计算出一段时间内林分任意位置处的光照值。与林下辐射计测量值以及半球照片计算结果的比较,该模型基本上能够满足对林分光环境了解的要求。 5. 从川西亚高山森林生产力的角度,探讨了森林生产力研究的方法以及川西地区的研究历史和成果,发现了其中的一些规律和问题,特别是在叶面积测量上,还没有使用标准的叶面积指数定义。综合来看,川西地区针叶林叶面积指数(单位土地面积上植物冠层总叶面积的一半) 应在4-5 之间。降雨丰富的华西雨屏带是川西地区森林生产力最高的地区,而向西北森林生产力逐渐降低。川西地区云冷杉林森林生产力平均约为600 gDM m-2 a-1,但是根据辐射能计算的潜在生产力则达到1800 gDM m-2 a-1。实际与潜在森林生产力的巨大差异说明其它因子对生产力的影响。 6. 王朗亚高山3 个典型森林林分中,白桦林样地(BF) 林下草本以糙野青茅、牛至、紫菀等喜阳性物种为主,林下透光度较高;冷杉林样地(FF) 林下透光度最低,以喜阴性物种水金凤、蟹甲草、囊瓣芹等为主;而云杉林样地(SF)林分林龄最大,林下透光度介于冷杉林和白桦林之间,草本层仍然以喜阴性物种东方草莓、紫花碎米芥、酢浆草等为主。冷杉林和云杉林的灌木层也很丰富,卫矛属、五加属、茶藨子属、忍冬属植物很丰富,而在白桦林则以栒摘要子属、榛子属、鹅耳枥属等植物为主。藓类植物在云杉林中最丰富,并且形成毯状层,其它两个林分则很稀少。3 个样地林分结构与林下光环境有很强的相关性,从光环境特征可以在一定程度上推测林分的结构。各样地单纯从乔木层材积推算的NPP 排列顺序为BF>FF>SF,与林下辐射透射率和林分年龄的顺序相同,暗示辐射对群落演替过程的驱动作用。 7. 用半球照相法测得BF、FF 和SF 3 个样地的有效叶面积指数以SF 样地最高,BF 最低。如果考虑针叶树叶片在小枝上的丛聚分布,利用北方针叶林的数值进行校正,则SF 样地LAI 显著增加(达到89%),其它样地的LAI 基本不变甚至有所下降。校正后的数值与文献中地面测量的结果较相近,说明在使用半球照相法测量川西亚高山针叶林LAI 时必须加以校正。 8. 在3 个样地中,白桦、岷江冷杉和方枝柏种群为丛聚分布,紫果云杉在FF和SF 样地中基本上为随机分布。3 个物种出现丛聚分布的最短距离约为2m,在最短距离以内则为随机分布。最短距离可能与树冠大小有关,种子传播特征以及对光照的需求状况可能是造成这种分布格局类型的原因。 Radiative transfer plays a key role in forest ecosystems. Solar radiation providesenergy for photosynthesis, appropriate ambient temperature and development informationfor plants. However, quality and quantity of radiation reaching land surface are affected byweather and subsequently influence the growth and development of plants, which in turnchanges the budget of radiation in forest. Soil temperature changes with the variation ofradiation under forest canopy and influences the activity of roots and rate of nutrientturnover. Thus, any changes of radiation will induce chain reactions in the entireecosystem and display in the value of net primary productivity which will possibly shiftthe relationship between carbon source and sink at local or regional scale and feed back tothe global climate system. On the other hand, as a component of ecosystems, humanbeings of course need to demand more materials and better service from ecosystems. Forthese purpose, man must adapt their pattern and frequency of interference to ecosystems.This paper aims to research on the canopy structure, the radiation distribution and theirinfluence on soil temperature from the process of radiative transfer in subalpine forestecosystem of western Sichuan. The main results are: 1 Present a new photogrammetric method for leaf area. The main idea is to convertnon-vertically taken images of planar leaves to orthoimages through projectivetransformation. The resultant images are used to get leaf morphological parametersthrough image processing. This method enables users to take photos at almost anyorientation and distance if only the leaves are placed on same plane, and to processlarge quantity of leaves in a short time, which is suitable for field measurement. Theresolution of leaf area is adjustable to fit for special requirement. 2 A model using hemispherical photos combining with solar tracks and radiation courseis provided to simulate light variation in forest. The hemispherical photos of canopyrecord the real spatial distribution of each element of plants viewed from a point. Skyradiance is simulated with CIE standard clear sky or cloudy sky model. This modelcan be used to simulate real time light variation under canopy. 3 Present a soil temperature model. Soil could be regarded as a body of resistor andcapacitor. Some of the budget of solar radiation in soil body is transformed into soilpotential energy, the soil temperature. Variation of soil temperature is driven by solarradiation, vegetation, soil properties, etc. This model has two parameters, one of whichis time constant and is related to soil water content. The inversed model can be used tosimulate the variation of soil water. 4 By using model tRAYci developed by Brunner (1998), the 3-D distribution of light inthree subalpine forest stands of Wanglang Nature Reserve has been simulated andvalidated with value of radiometers in these stands. This model can basically satisfythe need for understanding light regimes of these stands. 5 Present some principles and questions of NPP (net primary of productivity) researchesin western Sichuan. The standard leaf area index (LAI) defined by Chen and Black(1997) has not been used in this region. Total leaf area and projected leaf area indexare still used in NPP researches which may differ around 1-fold in magnitude. Thestandard LAI which is a half of total leaf area above unit land area should be between4 and 5 for typical subalpine coniferous forest of western Sichuan concluded fromliteratures. The maximum forest NPP occurs in West China rain belt and decreasesnorthwestwards. Average NPP of spruce-fir forest in western Sichuan is about600gDM m-2 a-1, which is below the potential NPP of 1800gDM m-2 a-1 based onmeasured radiation in this region. The significant difference between potential and realNPP suggests that other factors influence the growth of stands. 6 In the three subalpine forest stands of Wanglang Nature Reserve, herbage layer ofAbstractbirch stand (BF) with age of 40 is dominated by heliophytes of Deyeuxia scabrescens,Origanum vulgare, Aster tongoloa etc.. However, both of the other two stands aredominated by shade tolerent species, such as Impatiens noli-tangere, Impatiensdicentra, Cacalia deltophylla and Pternopetalum tanakae etc. in fir stand (FF) withage of 180 and Fragaria orientalis, Cardamine tangutorum and Oxalis corniculata etc.in spruce stand (SF) with age of 330. Shrub species in the latter two stands arerelatively rich, typical dominant genera being Euonymus, Acanthopanax, Ribes andLonicera. Birch stand has relatively sparse shrubs dominated by genera of Cotoneaster,Corylus and Carpinus. Mosses are significant only in spruce stand. The canopystructure controls the light regime of stand, which influence the composition of herblayers beneath the canopy. This light regime-community structure relationship can beused to infer the herb community from canopy structure. The NPP derived from timbervolume of arbor layer of the three stands decreases from BF to SF, which is in thesame order of transmitted total radiation under canopy and age of these stands,suggesting the driving effect of radiation in the succession of community. 7 The highest effective LAI of the three stands obtained by hemispherical photos is inplot SF and lowest in plot BF. After rectification of the clumping effect of leaves onshoot, the real LAI in plot SF increases significantly (89%) and approximate to theaverage LAI of coniferous forest in western Sichuan. Therefore, the LAI obtainedfrom hemispherical photos needs rectification for clumping effect. 8 Spatial distribution pattern for Betula platyphylla, Abies faxoniana and Sabinasaltuaria is clumpy, but Picea purpurea almost random in plot FF and SF. The shortestdistance for clumpy distribution for Betula platyphylla and Sabina saltuaria is 1.5m,and 2m for Abies faxoniana. And random pattern for these trees is exhibited within thisrange which almost coincides with the diameter of crown. Seed dispersalcharacteristics and light requirement may be the reason for different spatial pattern.
Resumo:
干旱胁迫是全球范围内影响植物生存、生长和分布的重要环境因子。岷江上游干旱河谷区,由于生态环境的脆弱性和长期人类活动的干扰和过度利用,导致植被严重退化,水土流失加剧,山地灾害频繁,干旱化和荒漠化趋势明显。这种趋势若不能遏制,将严重阻碍区域社会经济的快速协调发展,并且威胁成都平原地区的发展和长江中下游地区的生态安全。因而开展干旱河谷生态恢复研究成为解决这些问题的关键。水分匮乏是限制干旱河谷生态恢复的关键因子,在全球气候变化的背景下,干旱胁迫在区域尺度上可能会更加严重,并使干旱河谷的生态环境更加恶化。因此,深入研究干旱河谷乡土植物对干旱胁迫的响应和适应机理,具有非常重要的理论和实践意义。 本论文以岷江上游干旱河谷的三种乡土豆科灌木,白刺花(Sophora davidii)、小马鞍羊蹄甲(Bauhinia faberi var. microphylla)和小雀花(Campylotropics polyantha)理论和实践意义。为研究对象,在人工控制条件下设计了4-5个连续性干旱胁迫处理,系统地研究了灌木幼苗的生长、生物量积累和水分利用效率(WUE)、形态结构和生理过程等对干旱胁迫的反应,揭示了幼苗的干旱适应能力及种间差异。主要研究结论如下: 1) 灌木生长和繁殖对干旱胁迫的反应 在干旱胁迫下,幼苗生长速率显著减小,叶片衰老和脱落比率增大,这些变化随着胁迫强度的增加具有累积效应。叶片比茎对干旱胁迫的反应更敏感。在严重干旱胁迫下,幼苗的有性繁殖被限制,但在中等程度干旱胁迫下,幼苗的有性繁殖能力被提高。 2) 灌木生物量积累及其分配和WUE对干旱胁迫的反应 在干旱胁迫下,灌木各器官的生物量都显著减小,但是生物量的分配侧重于地下部分,使得根茎比在干旱条件下增大。幼苗的耗水量(WU)随着干旱胁迫的增加而显著减少。白刺花和小马鞍羊蹄甲WUE在干旱胁迫下降低;小雀花的WUE在中等干旱胁迫下升高。 3) 灌木叶片结构特征对干旱胁迫反应 白刺花叶片具有较为典型的旱生型结构,而小马鞍羊蹄甲和小雀花则为中生型结构。在1至2年的干旱胁迫下,灌木叶片结构组成未发生本质性的改变,主要是细胞大小的变化。在中等和严重干旱胁迫下,叶肉组织厚度明显减小;并且气孔和表皮细胞面积也显著减小,气孔和表皮细胞密度显著增大;叶肉细胞层数、P/S值、表皮厚度等无显著变化。 4) 灌木对干旱胁迫的生理响应 气体交换参数和叶片相对含水量(RWC)在中等干旱胁迫下发生了明显的改变,而叶绿素荧光参数和光合色素含量在严重干旱胁迫下才发生显著变化。在干旱胁迫下,净光合作用速率(Pn)、气孔导度(gs)和RWC呈下降趋势,而叶片温度(Tl)呈增加趋势,蒸腾速率(Tr)的变化不明显。除了日最大Pn减小以外,干旱胁迫对气体交换参数的日变化无显著影响,但是对光合-光响应曲线有显著的影响,使有效光合时间缩短。在严重干旱胁迫下光系统受到损害而代谢减弱,PSⅡ中心的内禀光能转换效率(Fv/Fm)、量子产量(Yield)、光化学淬灭参数(qP)显著降低,而非光化学淬灭参数(NPQ)明显增加。气孔限制和非气孔限制对Pn的影响与干旱胁迫强度有关。在中度胁迫下,气孔限制起主导作用,在严重胁迫下非气孔限制起主导作用,40% FC水分条件可能是灌木由气孔限制向非气孔限制的转折点。 5) 灌木对干旱胁迫的适应能力及其种间差异 三种灌木对干旱胁迫具有较好的适应能力,即使在20% FC,幼苗未因干旱胁迫III而死亡;80% FC适宜于幼苗生长。白刺花生长速率慢,耗水量较少,具有较强的耐旱和耐贫瘠能力,并具有干旱忍受机制,能够在较干旱的环境中定居和生长。小马鞍羊蹄甲和小雀花,生长快,水分消耗量较大,尤其是小雀花,对干旱胁迫的忍受能力较弱,具有干旱回避机制,因而适宜于在较为湿润的生境中生长。综合分析表明,生长速率较慢的物种抗旱能力较强,其更适宜于作为干旱地区植被恢复物种。 Drought is often a key factor limiting plant establishment, growth and distribution inmany regions of the world. The harsh environmental conditions and long-termanthropogenic disturbance had resulted in habitat destruction in the dry valley ofMinjiang river, southwest China. Recently, it tended to be more severe on the vegetationdegradation, soil erosion and water loss, natural disaster, as well as desertification, whichimpact on regional booming economy and harmonious development, and would be verydangerous to the environmental security in the middle and lower reaches of Yangzi River.Therefore, ecological restoration in the dry valley is one of the vital tasks in China. Waterdeficit is known to affect adversely vegetation restoration in this place. Moreover, in thecontext of climate change, an increased frequency of drought stress might occur at aregional scale in the dry valleys of Minjiang River. The selection of appropriate plantingspecies for vegetation restoration in regard to regional conditions is an important issue atpresent and in further. The research on responses of indigenous species to drought stresscould provide insights into the improvement of the vegetation restoration in the dry valleys of Minjiang River. In this paper, the responses of three indigenous leguminous shrubs, Sophora davidii,Bauhinia faberi var. microphylla and Campylotropics polyantha, to various soil watersupplies were studied in order to assess drought tolerance of seedlings, and to compare interspecific differences in seedlings’ responses to drought stress. The results were as follows: 1 Growth and reproduction of shrubs in response to drought stress Seedling growth reduced significantly while leaf senescence accelerated underdrought stress, the cumulative responses to prolonged drought were found. The capacityfor reproduction was limited by severe drought stress, and improved by moderate droughtstress. Leaf responses were more sensitive than shoot to various water supplies. 2 WUE, biomass production and its partitioning of shrubs in response to drought stress Drought stress reduced significantly the total dry mass and their components ofseedlings, and altered more biomass allocation to root system, showing higher R/S ratiounder drought. Water use (WU) and water-use efficiency (WUE) of both S. davidii and B.faberi var. microphylla declined strongly with drought stress. The WU C. polyantha ofalso declined with drought stress, but WUE improved under moderate drought stress. 3 Anatomical characteristics and ultrastructures of leaves in response to drought stress There were xeromorphic for S. davidii leaves and mesomorphic for B. faberi var.microphylla and C. polyantha at the all water supplies. The foundational changes in leafstructures were not found with drought stress. However, mesophyll thickness, the areas ofstomatal and epidermis reduced slightly while the densities of stomatal and epidermisincreased under severe drought stress. Variations in these parameters could mainly be duoto cell size. Other structures did not displayed significant changes with drought stress. 4 Physiological responses of shrubs to drought stress The gas exchange parameters and leaf relative water content (RWC) were affectedby moderate stress, while chlorophyll fluorescence and chlorophyll content were onlyaffected by severe stress. Drought stress decreased net photosynthesis rate (Pn), stomatalconductance, light-use efficiency and RWC, and increased leaf temperature. Therespiration rates (Tr) were kept within a narrower range than Pn, resulting in aprogressively increased instantaneous water use effiecency (WUEi) under drought stress.Moreover, drought stress also affected the response curve of Pn to RAR, there was adepression light saturation point (Lsat) and maximum Pn (Pnmax) for moderate andsevere stressed seedling. However, diurnal changes of gas exchange parameters did notdiffer among water supplies although maximum daily Pn declined under severe stress.VISevere stress reduced Fv/Fm, Yield and qP while increased NPQ and chlorophyll content.Photosynthetic activity decreased during drought stress period due to stomatal andnon-stomatal limitations. The relative contribution of these limitations was associatedwith the severity of stress. The limitation to Pn was caused mainly by stomatal limitationunder moderate drought stress, and by the predominance of non-stomatal limitation undersevere stress. In this case, 40% FC water supply may be a non-stomatal limitation 5 Interspecific differences in drought tolerance of shrubs Three shrubs exhibited good performance throughout the experiment process, evenif at 20% FC treatment there were no any seedlings died, 80% FC water supply wassuitable for their establishment and growth. S. davidii minimized their water loss byreducing total leaf area and growth rate, as well as maintained higher RWC and Pncompared to the other two species under drought stress, thus they might be more tolerantto the drought stress than the other two species. On the contrary, it was found that C.polyantha and B. faberi var. microphylla had higher water loss because of their stomatalconductance and higher leaf area ratios. They reduced water loss with shedding theirleaves and changing leaf orientation under drought stress. Based on their responses, thestudied species could be categorized into two: (1) S. davidii with a tolerance mechanismin response to drought stress; (2) C. polyantha and B. faberi var. microphylla withdrought avoidance mechanism. These results indicated that slow-growing shrub speciesare better adapted to drought stress than intermediate or fast-growing species in present orpredicted drought conditions. Therefore, selecting rapid-growing species might leavethese seedlings relatively at a risk of extreme drought.
Resumo:
沙棘广泛分布于亚欧大陆的温带地区和亚洲亚热带的高海拔地区。沙棘能适应多种生态环境,能耐受多种逆境(如干旱、低温、高温和盐害等)。在中国,沙棘常常被用作植被恢复中的先锋树种而大量栽培。本文以中国沙棘为试验材料,探索沙棘适应干旱机制,以及沙棘对干旱胁迫的适应机制是否存在种群间的差异,同时试图通过分析干旱胁迫下沙棘叶片蛋白质表达变化探索沙棘适应干旱胁迫的分子机理。 对三个分别来自低海拔湿润地区、低海拔干旱地区和高海拔湿润地区的中国沙棘种群进行干旱胁迫处理。干旱胁迫能提高根冠比,比叶面积,降低平均叶面积和总生物量,提高沙棘的抗氧化性酶活性、脯氨酸含量、脱落酸(ABA)含量、降低光合作用,提高长期用水效率。实验中的这两个低海拔种群比高海拔种群抵抗干旱的能力更强,不同的种群采用了不同的策略来耐受干旱胁迫和过氧化胁迫。 在2004 年度的实验中,干旱胁迫处理下,高海拔湿润种群(道孚种群)严重失水,生长也受到更大的抑制,非气孔因素在抑制光合作用方面占支配地位,抗坏血酸含量下降,ABA和脯氨酸含量增加幅度比九寨沟种群的要高,这可能是因为道孚种群严重失水而引起的;而低海拔湿润种群(九寨沟种群)的体内水分状况几乎不受干旱的影响,生长情况也较道孚种群要好。 在2005 年度的试验中,和高海拔湿润地区种群(道孚)相比较,低海拔干旱地区种群(定西)在叶片相对水含量、根冠比、抗氧化酶活性(过氧化氢酶、抗坏血酸过氧化物酶和谷胱甘肽过氧化物酶)、保护性物质(脯氨酸,脱落酸)含量等方面都要高,光能热耗散能力也更强,而且气体交换参数(气孔扩散阻力和胞间CO2浓度等)对干旱也更不敏感。 分析了干旱胁迫下沙棘叶片蛋白质表达的变化。共发现319 个蛋白质,有4 个蛋白在干旱胁迫下消失(Putative ABCtransporter ATP-binding protein 、Hypothetical proteinXP-515578,热激蛋白Hslu219 和一个没得到鉴定的蛋白),4 个只在干旱胁迫下出现(没命名的蛋白质产物,对甲基苯-丙酮酸双加氧酶,NTrX 和一个没得到鉴定的蛋白),46 个蛋白质的表达丰度变化显著,包括32 个干旱负调蛋白,14 个干旱正调蛋白(3 个Rubisco 的大亚基、J-type–co-chaperone Hsc20、putative protein DSM3645-2335、putative acyl-COA 脱氢酶、nesprin-2 和两个没有得到鉴定的蛋白质)。这些蛋白质参与了氮代谢调控、抗氧化行物质的合成、脂肪酸β-氧化、核骨架构造、[Fe-S]基团组装、物质跨膜运输、细胞分裂或作为分子伴侣和蛋白质酶起作用。putative ABC transporter ATP-binging protein、NtrX、nesprin-2 和Hslu 是本试验新发现的高等植物蛋白,我们主要从它们的保守结构域或在其他生物中的同源物来猜测它们的功能。实验结果为我们研究植物抗干旱机制提供了新线索和新视野。 Seabuckthorn (Hippophae rhamnoides L.) is widly distributed throughtout the temperatureresiogn of Europe and Asia and sub-tropical plateau zone of Asia. H. rhamnoides can adapatseveral different environments, and can tolerant several envioronmental stresses (e.g, lowtemperature, high temperature, drought and salty). It has been widely used in forest restoration asthe pioneer species in China. In present study, we applied H.rhamnoides subsp. Sinensis asexperimental materials to study its drought-tolerant mechanism, and expected to findpopulational difference in drought-tolerant mechanism that may exist among populations, and tryto get some insight in drought-tolerant mechanism of it at morecular level through analyzing thechange of leaf protein expression. Three populations from high altitude wet zone, low altitude wet zone and low altitude arid znoe,respectively, were applied in our experiment, and were subjected to drought. Drought increasedthe root/shoot ratio(RS), special leaf area, long-term water use efficinency, activity of antioxidantenzymes, proline content and abscisic acid (ABA) content, declined the net photosynthesis rate(A), average leaf area (ALA), total biomass (TB). Both two low altitude populations were moredrought-tolerant than the high altitude population, and different population applied differentstratedgies to tolerant oxidant stress and drought stress. The results of the exprement in 2004 showed that Daofu population was more drought-sensitivethan Jiuzhai population. Under drought conditions, leaf relative water content (RWC) greatlydecreased in Daofu population, but not in Jiuzhai population. The large loss of water in Daofupopulation resulted in a limitation on A mainly caused by non-stomatal factors, severer suppression in growth rate and a significant reduction in ascorbic acid (AsA) content, comparedwith Jiuzhai population. The greater increase in content of ABA and proline in Daofu populationmay be also induced by large loss in water, so that enable plants to cope with sever drought. In the exprement of 2005, drought significantly increased RS, activities of catalase (CAT),peroxidase (POD), glutathione peroxidase (GPX) and ascorbate peroxidase (APX), and alsosignificantly increased ABA and proline contents. On the other hand, compared with Daofupopulation, drought induced larger RS and activities of CAT, GPX and APX, and higher ABAcontent in Dingxi population, whereas gas exchange traits, e.g., stomatal limitation value (LS) andintercellular CO2 concentration (Ci), were less responsive to drought in Dingxi population thanthose in Daofu population. All these factors enable Dingxi population to tolerant drought betterthan Daofu population. The leaf protein profile of seabuchthorn subjected to drought was analyzed. Altogether 319proteins were detected in well-watered sample, four proteins disappeard by drought (putativeABCtransporter ATP-binding protein, hypothetical protein XP-515578, Hslu219and aunidentified protein), four only appeared under drought (a probable nitrogen regulation protein(NtrX), a 4-hydroxyphenylpyruvate dioxygenase , an unnamed protein product and an identified protein), 32 drought down-regulated proteins, and 14 drought up-regulated proteins (nine wereidentified: three large subunits of Rubisco, a hypothetical protein DSM3645-23351, a putativeacyl-COA dehydrogenase, a nesprin-2, a J-type-co-chaperone HSC20 and two unmatchedproteins). These proteins may involve in β-oxidation, cross-membrane transport, cell division,cytoskeleton stabilization, iron-sulfur cluster assembly, nitrogen metabolism regulation andantioxidant substance biosynthesis or function as molecular chaperone or protease. Four proteins(a putative ABC transporter ATP-binging protein, NtrX, nesprin-2, Hslu) were new found in highplants, and their functions were estimated from their conserved domain or their homologues inother organism. Our results provided new clue and new insight for us to study thedrought-tolerant mechanism in plants.
Resumo:
杨树具有分布广、适应性强的特征,在生态环境治理和解决木材短缺方面均占有重要位置。青杨(Populus cathayana Rehd.)是青杨派树种的重要成员之一,也是生长较迅速、易繁殖的重要杨树资源。本研究选取了来自不同气候地区的青杨两种群为材料,采用植物生态学、生理学和生物化学的研究方法,系统地研究了青杨对干旱与遮荫、干旱与外源脱落酸(ABA)喷施的生长、形态、生理和生化响应及种群间差异,研究成果可为我国干旱半干旱地区的造林以及生态恢复提供理论依据和科学指导。主要研究结论如下:1.青杨在干旱胁迫下的适应机制为:生长性状及生物量的分配变化:干旱胁迫下虽然植株生长受抑,株高、基茎及各部分生物量都显著减小,但有相对较多的生物量向根部分配,根/冠比以及细/粗根比增加。青杨对干旱胁迫的光合作用表现为:干旱胁迫降低了青杨的净光合速率、蒸腾速率、气孔导度以及光合氮利用效率,提高了瞬时用水效率。干旱还引起了活性氧的产生,使得膜脂过氧化产物丙二醛(MDA)增加,同时也增强了植物抗氧化酶系统(如超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性的增加)及非酶系统的能力(如抗坏血酸(AsA)含量的增加)。干旱降低了植物叶片的相对含水量,而促进了渗透调节物质(游离脯氨酸及可溶性糖)的积累,增加了植物的渗调能力。干旱下青杨两种群的内源ABA含量显著增加,碳同位素组分(δ13C)也显著提高。这些结果证明植物遭受干旱胁迫后发生一系列的形态、生理和生化响应,这些变化能提高植物在干旱下的存活和生长能力。2.青杨两种群对干旱胁迫反应的种群差异:与来自湿润地区的汉源种群相比,来自干旱地区的乐都种群在干旱条件下生物量向根系分配的可塑性更强,同时具有更强的抗氧化系统能力,所受到活性氧的伤害也更少,并且累积更多的脯胺酸和ABA,具有更高的δ13C。这些都说明了乐都种群对干旱的适应性比汉源种群更强。两种群对干旱的响应差异应归于它们的用水策略的不同:汉源种群来自湿润地区,采用了耗水型的用水策略,抗旱能力较弱;而乐都种群,来自干旱地区,通常采用节水型的用水策略,有更强的抗旱能力。3.遮荫对青杨两种群抗旱性的影响:遮荫对青杨抗旱性的影响决定于遮荫程度的不同,我们的结果表明中度的遮荫可以有效的提高干旱下植物的生长,对干旱胁迫有明显的缓解作用,具体体现在中度遮荫下受旱植物的叶片相对含水量得到提高,使得植物体内水分状况得到了改善;光合速率并未降低,植物光合氮利用效率增加,说明中度的遮荫并未明显限制植物的碳获得;抗氧化酶活性与膜脂过氧化产物MDA含量的同时降低,说明中度遮荫下所受到的活性氧伤害减少;中度遮荫下的ABA及δ13C的变化也不如在全光下变化明显,这也说明中度遮荫缓解了干旱胁迫。但是重度的遮荫却对干旱胁迫有明显的加剧作用,主要表现在重度遮荫降低了植物的光合速率,严重抑制了植物的生长;同时重度遮荫下脯胺酸含量和抗氧化酶活性的急剧下降,导致了植物渗调能力的下降及膜脂过氧化产物MDA的显著升高;重度遮荫还显著降低了内源ABA的累积和δ13C,降低了植物的抗旱能力。此外,青杨两种群在对干旱和遮荫的响应中,也表现出种群差异。汉源种群,来自湿润且年日照辐射较少的地区,表现出相对更强的耐荫性和需水性。而乐都种群,来自干旱且年日照辐射丰富的地区,表现出相对更强的耐旱性和需光性。这说明了植物对环境胁迫的耐受性是其长期适应原生境的结果,并且来自不同气候地区的两种群在面临环境胁迫时会采取不同的生存策略。4. 外源ABA喷施对青杨两种群抗旱性的影响:外源ABA的喷施可以提高两种群的抗旱性,具体表现为外源ABA喷施促进了青杨根系的生长,显著提高了干旱下植物的根/冠比和细/粗根比,减少了比叶面积;在生理生化方面,外源ABA降低了干旱下植物叶片的气孔导度,降低了蒸腾速率和净光合速率,但提高了瞬时用水效率,提高了叶片的相对含水量,增加了干旱下植物的保水能力。外源ABA进一步增加了干旱下植物内源ABA的积累,促进了植物渗调物质如脯胺酸和可溶性糖的积累,增加了抗氧化酶系统(如SOD、APX、CAT)的活性和非酶系统AsA的含量,降低了活性氧(如超氧阴离子(O2和过氧化氢(H2O2))对植株的伤害。此外,外源ABA还进一步提高了干旱下植物的δ13C,提高了植物的长期用水效率,由此提高了植物的抗旱能力。另一方面,两种群对外源ABA和干旱的响应也有所差别。来自湿润地区的汉源种群,对干旱较为敏感,所受干旱的影响也较大,而外源ABA的喷施对汉源种群抗旱性的提高作用也更为突出。乐都种群,由于其长期适应干旱地区的生长,本身已具有较强的抗旱能力,因此外源ABA喷施对其抗旱性的提高不如对汉源种群的效果明显。由此我们可以得出对于一些抗性弱或干旱敏感的物种或者种群,可以采用外施ABA的方法来提高其抗性。Poplars play an important role in lumber supply, and are important component ofecosystems due to their wide distribution and well adaptation. Populus cathayana Rehd.,which belongs to Populus Sect. Tacamahaca Spach, is one of the most important resources ofpoplars for its fast growth and reproductive. In this study, different populations of P.cathayana were used as experiment material to investigate the adaptability to drought stressand population differences in adaptability, and the effects of shade and exogenous abscisicacid (ABA) application on the drought tolerance. Our results could provide a strongtheoretical evidence and scientific direction for the afforestation, and rehabilitation ofecosystem in the arid and semi-arid area, and provide a strong evidence for adaptivedifferentiation of different populations, and so may be used as criteria for species selectionand tree improvement. The results are as follows:1. A large set of parallel response to drought stress: Drought stress caused pronouncedinhibition of the growth and increased relatively dry matter allocation into the root. For thetwo populations, the shoot height, basal diameter and total biomass were decreased but theroot/shoot ratio and fine root/coarse root ratio were increased under drought conditions;Drought stress caused pronounced inhibition of photosynthesis, decreased the stomatalconductance, transpiration rate, and photosynthetic nitrogen-use efficiency (PNUE) butincreased the instantaneous water use efficiency. Drought significantly improved the levels ofreactive oxygen species and malondialdehyde (MDA) and to induce the entire set ofantioxidative systems including the increase of activities of superoxide dismutase (SOD),ascorbate peroxidase (APX), catalase (CAT) and ascorbate (AsA) content. Drought decreased the leaf relative water content (RWC) but improved the capability of osmotic adjustmentindicated by the higher proline accumulation. Drought also increased the ABA content andcarbon isotope composition (δ13C), which indicating the long period water use efficiency wasimproved under drought. These results demonstrate that there are a large set of parallelchanges in the morphological, physiological and biochemical responses when plants areexposed to drought stress; these changes may enhance the capability of plants to survive andgrow during drought periods.2. Difference in adaptation to drought stress between contrasting populations of P.cathayana: Compared with the Hanyuan population (wet climate), the Ledu population (dryclimate) showed higher root/shoot ratio and water use efficiency, exhibited higherantioxidative systems capability thus resulting in less oxidative damage, accumulated moreABA and free proline content under drought conditions. The results suggested that there weredifferent water-use strategies between the two populations. The Ledu population, whichcomes from dry climate region, with higher drought tolerance, may employ a conservativewater-use strategy, whereas the Hanyuan population, which comes from wet climate, withlower drought tolerance, may employ a prodigal water-use strategy. These variations indrought responses may be used as criteria for species selection and tree improvement.3. The effects of shade on the drought tolerance: The reduction in the availability of lightand water affected the morphological and physiological responses of the two P. cathayanapopulations. In addition, the light environment modified the growth responses of P.cathayana seedlings to varying water environments in different ways depending upon theintensity of the light levels considered. There is an apparent alleviation to drought effects bymoderate shade in P. cathayana seedlings, as indicated by the higher leaf RWC, and unchanged net photosynthesis and PNUE, as well as by the lower antioxditative enzymeactivity, MDA, ABA and δ13C levels, which implied moderate shade did not significantlylimited the carbon acquisition or inhibited the plant growth, but ameliorated the detrimentaleffects of drought. On the other hand, an apparent aggravation to drought effects by severeshade was also observed, as indicated by the pronounced decrease of plant growth and net photosynthesis, the lower total biomass, ABA level, δ13C, free proline content andantioxditative enzyme activity and higher MDA accumulation. By contrast, the twopopulations showed different responses to shade and drought. The Hanyuan population,which comes from a riparian basin having a relatively wet climate and less annual solarradiation, is more sensitive to drought but more tolerant to shade. The Ledu population, whichcomes from a mountainous plateau with less rainfall and with more annual solar radiation, ismore tolerant to drought but more sensitive to shade. The results demonstrated that theendurance of plants to stress is a result of long-term evolution and adaptation to theenvironment, as suggested by the different strategies employed by the P. cathayanapopulations originating from contrasting habitats when they were exposed to drought andshade.4. The effects of exogenous ABA application on the drought tolerance: For bothpopulations under drought conditions tested, exogenous ABA application significantlyimproved the root/shoot ratio, fine root/coarse root ratio, and decreased the specifical leaf area.On the physiological and biochemical traits, exogenous ABA application significantlydecreased stomatal conductance, transpiration rate and net photosythesis but increased theinstance water use efficiency and leaf RWC. On the other hand, exogenous ABA applicationsignificantly increased endogenous ABA, proline, solube sugar and AsA content, as well asSOD, APX and CAT activities, thus reduced the damage of reactive oxygen species. Moreover,the long period water use efficiency as indicated by δ13C was also improved by exogenousABA application. In additionally, there was different responsive between the two populationsto drought and exogenous ABA application. The Hanyuan population, which comes from wetclimate region, is more sensitive to drought, and the effect of exogenous ABA is moreobviously than that in the Ledu population, which comes from dry climate region and is moredrought-responsive. Therefore, we can use exogenous ABA application to improve theresistance of plants, especially for the drought- sensitive species or populations.
Resumo:
常绿阔叶林以其富饶的生物资源、丰富的生物多样性和巨大的生态与环境效益引起了人们越来越大的重视,它的研究已成为国际植被科学界关注的主题之一。我国分布着世界上面积最大的亚热带常绿阔叶林,在世界植被中具有重要地位,它的分布表现出明显的地带性差异,存在着多样的植物群系及其对应的气候特征。但是在植物功能性状领域,与全球范围其它生物群系相比,常绿阔叶林物种的研究较少,其功能性状间、功能性状与环境间的关系尚不清晰。 本研究以常绿阔叶林木本植物的当年生小枝为对象,试图从小枝水平上的生物量分配格局、叶片大小与数量的权衡关系、小枝茎的构型效应、叶片元素化学计量学,以及小枝大小的成本与效益分析等方面,较为系统地揭示小枝水平上的植物功能性状间及其与气候间的关系。因此,在华西雨屏带内部的不同纬度设置峨眉-青城-雷波-平武的温度梯度进行比较,并对有降水差异的川西南偏湿性(雷波)与偏干性常绿阔叶林(西昌)进行对比研究,同时在不同山体进行不同海拔梯度的比较研究。 本文主要研究结果如下: (1)小枝生物量分配格局叶水平上,叶片重-叶柄重(Y轴vs.X轴,下同)呈斜率小于1的异速生长关系,表明叶柄对叶内部的生物量分配影响显著。小枝水平上,叶和茎的生物量以及它们与小枝总生物量间基本呈等速生长关系,表明大的小枝或大叶物种不一定在叶生物量的分配上占优势。不同生活型间,在小枝或者茎的生物量一定时,常绿物种叶片的生物量比例较落叶物种稍高。与温度和水分较优越(峨眉及其低海拔)的生境相比,在相对低湿(螺髻)与低温(平武)的生境中的植物会减少对叶的投入而增加对支撑部分的投资比例。 (2)小枝叶片大小与数量的权衡无论是不同气候带还是不同生活型以及不同海拔梯度,叶片大小与出叶强度基本都是呈负的等速生长关系,表明了叶片大小-数量在小枝水平上的权衡。在不同气候梯度的对比中,叶片数量(出叶强度)一定时,高温和高水分生境(峨眉)比低温(平武)和低湿(螺髻山)生境中的物种的叶片大小(质量和面积)更大,表明不同生境的比较中,小的叶片可能具有较高的出叶强度和更高的适合度收益。“出叶强度优势”(Leafingintensitypremium)假说可能不适宜解释不同生境物种叶片大小差异。 (3)小枝茎的构型效应虽然茎长和茎径与叶片大小都呈正相关关系,与出叶强度都呈负相关关系,但茎长/茎径比与叶/茎生物量之比呈负相关关系;与叶片的大小呈负相关关系,与出叶强度呈正相关关系。这说明小枝构型能影响小枝叶/茎生物量分配和叶大小-数量的权衡关系。其影响机制可能是小枝内部的顶端优势。另外,茎长/茎径比在低湿和低温等不利生境中的植物中较高,而在降水和温度较适宜环境中较低。 (4)叶片C、N、P化学计量学N含量和P含量,C/N比和比叶重(LMA,leafmassperarea)呈正的等速生长关系,而N和LMA,P和LMA呈负的等速生长关系。在LMA一定时,C/N比随着生境胁迫压力的增加而降低,N、P含量随着生境压力的增加而增加。在P含量一定时,N含量随着生境压力的增加而降低,即N/P比在生境条件较优(峨眉及其低海拔)时较高。常绿和落叶植物叶片的N/P比没有差异,在LMA一定时,常绿植物的N、P含量较高、C/N比较低。总之,植物的C、N、P化学计量学特征受叶片属性如LMA与气候,及其相互作用的影响。 (5)小枝大小的代价与效益分析、TLA与小枝总重总叶面积(TLA,totalleafarea,Y轴,下同)与总叶重(X轴)均呈斜率小于1的异速生长关系,TLA与小枝横切面积呈斜率为1的等速生长关系。表明叶片面积的增加总是小于叶重和小枝总重的增加,随着小枝的增大,它的叶面积支撑效率下降。在热量和降水优越的生境(峨眉及其低海拔)中,相同小枝重或者相同茎横切面积的小枝,其叶面积支撑效率较低湿与低温环境下(螺髻山、平武及高海拔)的高。 总体上,本文初步研究了小枝水平上可能存在的以下三种权衡关系:叶-茎生物量分配权衡;叶片大小-数量的权衡;小枝茎长-茎径的权衡关系,以及气候要素等对这三种权衡关系的影响。在此基础上,我们还讨论了这些权衡关系的可能形成机制,及其与物种生态适应的联系。本研究丰富了生活史对策中关于权衡关系的研究内容,为我国常绿阔叶林功能生态学研究积累了材料。 Evergreen broad-leaved forests are attracting much more attention from vegetation ecologists than ever before because of their abundant nature resource and biological diversity, and also great ecological benefits. China has the largest distribution of subtropical evergreen broad-leaved forests (temperate rainforests) that are typical and representative in the world. The forests span over more than ten degrees in latitude and more than 30 degrees in longitude, providing an ideal place to study plant functional ecology, i.e., the climatic effect on plant functional traits and the relationship between the traits. However, relative to the other biomes, there are few studies addressing functional ecology of the plant species from subtropical evergreen broad-leaved forests. In this study, I focused on the leaf size-twig size spectrum of the woody species of subtropical evergreen broad-leaved forests in southwestern china. I collected data on leaf size and number, twig size in terms of both mass and volume, and stem architecture from five temperate mountains, and then I analyzed the relationships between leaf and stem biomass and between leaf size and number, the effect of stem length/diameter ratio on biomass allocation and on the relationship between leaf size and number, leaf C:N:P stoichiometry, and the twig efficiency of supporting leaf area in relation to twig size. I also addressed the climate effect on the spectrum. The temperature gradient from warm to cool sites was represented by Emei Mountain, Qingchengshan, Leibo, and Pingwu, and the rainfall gradient was assumed to emerge from the comparison between Leibo (High) and Luojishan (Low). In addition, altitudinal effects were analyzed with comparisons between low and high altitudes for each mountains. My main results are as follows. Isometric relationships were found between leaf mass and twig mass and between lamina mass and twig mass, suggesting that the biomass allocation to leaves or laminas was independent of twig mass. Petiole mass disproportionably increase with respect to lamina mass and twig mass, indicating the importance of leaf petioles to the within-twig biomass allocation. In addition, the investigated species tended to have a larger leaf and lamina mass, but a smaller stem mass at a given twig mass at favorable environments including warm and humid sites or at low altitude than unfavorable habitats, which might be due to the large requirements in physical support and transporting safety for the species living at unfavorable conditions. Moreover, the evergreen species invested more in leaves and laminas than the deciduous at given stem or twig biomass within any specified habitats. Negative, isometric scaling relationships between leaf number and size broadly existed in the species regardless of climate, altitude, and life forms, suggesting a leaf size/number trade-off within twigs. Along the climatic gradients, at given leaf number or leafing intensity, the leaves were larger in the favorable environments than the poor habitats. This suggested that the fitness benefit gained by small leaves could be larger than that with high leafing intensity in the stressful sites. I concluded that the “leafing intensity premium” hypothesis was not appropriate to interpreting between-habitat variation in leaf size. Both stem length and diameter were positively correlated to leaf size but negatively correlated to leafing intensity. The ratio of stem length to diameter was negatively correlated to leaf mass fraction, and it was negatively correlated to leaf size but positively correlated to leafing intensity. This suggested that the stem architecture influenced twig biomass allocation and the relationship between leaf size and number. The mechanism underlying the architectural effect might lie in the apical dominance within twig. Moreover, the ratio was greater in unfavorable habitats but smaller in favorable environments. Positive, isometric relationships were found between N and P contents per leaf mass, and between C/N ratio and leaf mass per area (LMA), but N and P contents scaled negatively to LMA. C/N ratio decreased but N and P increased with increasing habitat stress at a given LMA. N content declined with increasing habitat stress at given P content. These indicated that N/P and C/N were higher but LMA was lower in favorable habitats than in the other circumstances. The evergreen and deciduous species were non-heterogeneous in N/P, but the evergreen species have higher N and P contents and lower C/N than the deciduous ones. In general, C:N:P stoichiometry were related to both climatic conditions and other important functional traits like LMA. Total leaf area (TLA) allometricly scaled to leaf mass with a slope shallower than 1, similar to the relationship between TLA and total twig mass (leaf mass plus stem mass), suggesting that TLA failed to keep pace with the increase of leaf mass and twig size. However, TLA scaled isometricly to twig cross-sectional area. Thus, it could be inferred that the twig efficiency of displaying leaf area decreased with increasing twig size. In addition, the efficiency at a given twig size was large in favorable than unfavorable habitats. In general, in this preliminary study, I studied three tradeoff relationships within twigs, i.e., between leaf and stem biomass, between leaf number and size, and between stem length and diameter, as well as the climatic effect on the relationships. I discussed the mechanisms underlying the tradeoff relationships in view of biophysics and eco-physiology of plants. I believe that this study can serve as important materials advancing plant functional ecology of subtropical forest and that it will improve the understanding of life history strategies of plants from this particular biome.
Resumo:
近年来,随着对作物重茬(连年种植)障碍原因的深入研究,植物的化感作用越来越受到国内外众多学者的重视。而作为重要调料和药用植物的生姜,其连作障碍也备受关注,系统地研究生姜化感作用将有助于理解和最终解决生姜连作障碍问题。本文通过研究生姜不同部位、不同浓度的水浸液对与其间作的两个物种(大豆和四季葱)种子的萌发及幼苗生长的影响,从而证明生姜化感作用的存在;并通过温室盆栽实验研究了生姜的自毒作用(即研究生姜不同部位、不同浓度的水浸液对其幼苗的形态、生理生化、光合作用、土壤酶、土壤微生物多样性及土壤养分的影响),从而揭示生姜退化和衰老的机制,并为生姜筛选出合适的间作物种提供科学依据,对生姜连作障碍提出科学的解决方法。主要研究结果如下: 1. 与对照相比,生姜所有部位(根茎、茎、叶)、所有浓度(10、20、40、 80 g l-1)的水浸液均抑制了大豆种子和葱籽的萌发率、幼苗生长、水分吸收和脂肪酶活性,并且其抑制程度随着水浸液浓度的增加而增强,其生姜各部位水浸液抑制效应的强弱顺序为茎>叶>根茎。这一结果表明生姜根茎、茎、叶含有能够抑制大豆种子和葱籽种子萌发和幼苗生长的水溶性化感物质。根茎是生姜的主要收获部位,而生姜的残株(主要是茎和叶)应该从大田中处理掉以减轻其抑制效应。生姜水浸液中主要化感成分包括:根茎水浸液中主要是丁香酸和伞花内脂;茎水浸液中主要是阿魏酸,且其含量最高为73.4 ug/g;叶水浸液中除了阿魏酸,其他六种物质均检测出来,但含量较高的主要有丁香酸、伞花内脂和香豆酸。 2. 生姜茎和叶不同浓度的水浸液均显著抑制了生姜幼苗的株高、每株叶片数和叶面积,其抑制程度随着水浸液浓度的增加而有所增强,而生姜幼苗每株分枝数差异不显著;同时生姜水浸液也极大程度地影响了生姜幼苗的生物量(包括地下生物量、地上生物量和总生物量,均为鲜重)。在同一浓度下,茎水浸液对生姜幼苗形态指标及生物量指标均显示出最强的抑制作用,叶水浸液次之,根茎水浸液最弱。与对照相比,低浓度的生姜根茎水浸液提高了生姜幼苗叶片内四种抗氧化酶(SOD、POD、CAT、APX)活性,高浓度的根茎水浸液抑制了四种抗氧化酶活性,而茎和叶水浸液均随着浓度的增加而抑制了四种抗氧化酶活性,三种水浸液均随着浓度的增加降低了生姜幼苗叶片内叶绿素的含量,而增加了生姜幼苗叶片的相对电导率和丙二醛含量。同时,三种水浸液均随着浓度的增加降低了生姜幼苗的光合参数(包括胞间CO2浓度、气孔导度、蒸腾速率及净光合速率)。 3. 三种生姜水浸液对所测六种土壤酶活性均产生了不同程度的影响,其中影响最大的是酸性磷酸酶和蔗糖酶,在10 g l-1 时就达到了显著水平,并且所有酶均有随着水浸液浓度增加而增大的趋势;相同部位的水浸液随着浓度的增加,细菌和真菌的数量呈增加趋势,而放线菌的数量呈减少趋势;三种生姜水浸液均随着浓度的增加降低了土壤中有机质的含量,加剧了土壤中硝态氮含量的积累,根茎水浸液对土壤有效磷、速效钾和铵态氮均显示出低浓度提高其含量而高浓度降低其含量的趋势,而茎和叶水浸液则随着浓度的增加均降低了其含量。 4. 与生姜单作相比,所有间作系统均在旺盛生长期和收获期不同程度地提高了土壤酶活性,同时也增加了土壤细菌数量及土壤微生物总数但不显著;所有间作系统在旺盛生长期和收获期均不同程度地影响了土壤真菌及放线菌数量(增加或减少),所有间作系统间的多样性指数差异不显著,除了旺盛生长期四种作物(生姜-大豆-四季葱-大蒜)的间作模式显著降低了多样性指数,其值仅为生姜单作的33.18%;生姜与大豆间作不仅提高了19.6%的生姜产量而且获得了较好的经济效益,并且,所有间作系统均显著抑制了生姜姜瘟病的发生。 5. 不同栽培模式不同程度地影响了收获期生姜的株高、分枝数、根茎产量及内在品质。其中处理2显著地促进了生姜的分枝(10.5%),同时处理2、3和4也促进了生姜的生长(株高分别增加了15.0%、11.4%和14.0%),并且这三个处理提高了生姜的产量;处理2和3能有效提高生姜块茎中维生素C(分别较单作生姜显著提高了3.29%和4.05%)、处理3显著提高了可溶性糖(8.2%)、姜辣素(4.6%)和蛋白质等有益物质的含量,降低硝酸盐有害物质的含量(处理2显著降低了14.0%),改善了姜块的外观和内在品质。并且,生姜与大豆间作具有最高的纯收入和产投比,分别较生姜单作提高了24.80%和8.8%。Recently, allelopathy has been more and more paid attentions by national and foreign scholars with profound research on reasons of crop replanted (continuous planted) obstacle. Ginger rhizome is valuable all over the world either as a spice or herbal medicine and ginger replanted obstacle is also paid attentions. Systematic research on ginger allelopathy will contribute to understanding and ultimate solving problem of ginger replanted obstacle. The effects of ginger aqueous extracts with different parts and concentrations on seed germination and early seedling growth of soybean and chive were studied in this article to testify that ginger existed allelopathy. Furthermore, ginger autotoxicity was also studied by pot experiment in greenhouse (namely research on effects of ginger aqueous extracts with different parts and concentrations on morphological indexes, physiological and biochemical indexes, photosynthesis, soil enzymes, soil microbial diversity and soil nutrients) to reveal mechanism of ginger degeneration and senescence, provide scientific basis for selecting appropriate intercropping species and put forward scientific resolvent for ginger replanted obstacle. The main results were as follows: 1. All aqueous extracts at all concentrations inhibited seed germination, seedling growth, water uptake and lipase activity of soybean and chive compared with the control, and the degree of inhibition increased with the incremental extracts concentration. The degree of toxicity of different ginger plant parts can be classified in order of decreasing inhibition as stem>leaf>rhizome. The results of this study suggested that rhizome, stem and leaf of ginger contained water soluble allelochemicals which could inhibit seed germination and seedling growth of soybean and chive. The rhizome is the main harvested part of ginger. The residue (mainly stems and leaves) of the ginger plant should be removed from the field so as to diminish its inhibitory effect. The main allelopathic components of three kind of aqueous extracts were as follows: Rhizome extract chiefly contained syringic acid and vmbelliferone and stem extract mainly contained frulic acid whose content was the highest (73.4 ug/g). The other six substances were detected except of frulic acid, but only contents of syringic acid, vmbelliferone and p-coumaric acid were higher. 2. Stem and leaf aqueous extracts of ginger with different concentrations significantly inhibited plant height, leaf numbers per plant and leaf area, and the degree of inhibition increased with the incremental extracts concentration. However, tiller number per plant of ginger seedling showed no significant difference. At the same time, ginger aqueous extracts also influenced biomass including under-ground biomass, above-ground biomass and total biomass (fresh weight) to a large extent. Under the same concentration, stem aqueous extract showed the mostly inhibitory effect on morphological indexes and biomass indexes of ginger seedling. Rhizome aqueous extract showed the leastly inhibitory effect and leaf aqueous extract was intervenient. Enhanced concentration of ginger aqueous extracts significantly reduced total chlorophyll content, accompanying with increases in memberane permeability (REL) and lipid peroxidation (MDA). Compared with the control, rhizome ginger aqueous extract of lower concentration (10 g l-1) increased the activities of major antioxidant enzymes (superoxide dismutase, SOD; peroxidase, POD; catalase, CAT; ascorbate peroxidase, APX) of ginger leaf tissue and higher concentration inhibited the activities of four antioxidant enzymes. However, stem and leaf aqueous extract inhibited the activities of four antioxidant enzymes with increase in concentration. Meanwhile, enhanced concentration of ginger aqueous extracts significantly reduced photo-parameters of ginger seedling (including CO2 concentration, stoma conductivity, net photosynthesis rate and transpiration rate). 3. Rhizome, stem and leaf ginger aqueous extract showed different effect on six soil enzyme activities, and acid phosphatase and invertase showed significant effect when aqueous extract concentration got 10 g l-1. Furthermore, six soil enzyme activities increased with increase in aqueous extract concentration. Bcterial and fungi number tended to increase while antinomyces tented to decrease with the increase in aqueous extract concentration of identical part. Ginger aqueous extracts reduced soil organic matter content with increased concentration, accompanying with NO3-—N accumulation in soil. Rhizome aqueous extract showed the same tendency for available P, available K and NH4+—N, namely lower concentration increased their contents in soil and higher concentration reduced their contents. While stem and leaf aqueous extracts reduced their contents with the increamental concentration. 4. All intercropping systems increased soil enzyme activities to different extent both at VGS and at HS compared to solo ginger. All intercropping systems increased the colony numbers of soil bacteria and total of soil microbe but not significantly either at VGS or at HS. All intercropping systems increased the colony numbers of soil fungi and actinomytes to a different extent (increase or decrease) both at VGS and at HS. For DI, difference between all cultivation patterns and S-G was not significant either at VGS or at HS except that G-S-C-G whose value was only 33.18% of S-G at VGS significantly decreased. G-S not only increased ginger yield by 19.6% but also obtained better economic benefit. Furthermore, all intercropping systems significantly inhibited occurrence of bacterial wilt of ginger. 5. Different cultivated pattern influenced plant height, tiller numbers, rhizome yields and intrinsic quality of ginger. Treatment 2 significantly facilitated tiller occurring (10.5%). Treatment 2, 3 and 4 promoted ginger growth (plant height respectively increased 15.0%、11.4% and 14.0%) and enhanced rhizome yields. Treatment 2 and 3 effectively increased vitamin C content (significantly increased 3.29% and 4.05% compared to solo ginger). Treatment 3 significantly increased contents of beneficial substances such as soluble sugar (8.2%), gingerols (4.6%) and protein. Treatment 2 significantly decreased contents of deleterious substance namely nitrate (14.0%) and improved appearance and intrinsic quality of ginger rhizome. Furthermore, treatment 2 (ginger/soybean intercropping) could obtain better economic benefit and showed the highest net income and ratio of benefit and cost whose values respectively increased by 24.80% and 8.8% compared to solo ginger.
Resumo:
光是植物赖以生存的重要环境因子,但是植物在获得光的同时不可避免的会受到紫外辐射的伤害。尤其是近年来,人类向大气中排放的大量氮氧化合物和氟氯烃类化合物(CFC’s)引起臭氧分子的分解,导致到达地球表面的紫外辐射增加,特别是UV-B辐射增强。而另一方面,植物对UV-B辐射反应的敏感性在种间和品种间存在差异,主要受植物基因型,生态型和生活型的控制。本项目分别以粗枝云杉和青杨组杨树为模式植物,从形态和生理生化方面分别研究了来自不同水分背景下的粗枝云杉种群和来自不同UV-B背景下的青杨种群在增强UV-B下的反应及其反应差异,并探讨了干旱、喷施外源脱落酸(ABA)对它们抗UV-B能力的影响。研究成果可为生态系统的恢复与重建提供理论依据和科学指导。主要研究结果如下: 1. 粗枝云杉的两个种群,湿润种群(来自四川黑水)和干旱种群(来自甘肃迭部)在水分良好和干旱状况下表现出对增强UV-B的不同响应。同时,干旱对粗枝云杉抗UV-B能力的影响也得到研究:两种胁迫共同作用时,干旱表现出在一定程度上减弱了增强UV-B对粗枝云杉的生理特性的影响。 干旱胁迫显著降低了两个粗枝云杉种群的光合同化速率(A), 气孔导度(gs)和PSII的有效光量子产量(Y), 同时,提高了非光化学猝灭效率(qN)和超氧化物歧化酶(SOD)的活性。与湿润种群相比,干旱种群抗旱性更强,表现为干旱种群拥有更高的SOD和干旱进一步加剧了UV-B的胁迫效应。 本研究中,干旱胁迫单独作用时,显著降低了青杨两个种群的生物量积累和气体交换,具体包括A、gs、蒸腾速率(E)和光合氮利用效率(PNUE),提高了两个种群的瞬时水分利用效率(WUEi)、长期水分利用效率(WUET)、碳同位素组分(δ13C)和氮含量(N)。同时,UV吸收物质和ABA含量也得到积累。另一方面,增强UV-B对青杨两个种群各个指标的影响,同干旱所引起的效应有着相似的趋势。同低海拔种群相比,高海拔种群有着更强的抗旱和抗UV-B能力,具体表现在高海拔种群有着更多的生物量积累,更强的气体交换和水分利用效率及更高水平的ABA和UV吸收物质含量。相比干旱诱导的生物量积累和气体交换的降低,在干旱和增强UV-B两个胁迫同时作用于青杨时,这种降低表现的更为明显。显著的干旱和UV-B的交互作用还表现在WUEi, WUET, δ13C, 可溶性蛋白含量, UV吸收物质含量, ABA, 叶片和茎中的N含量以及C/N比中。 3. 经过一个生长季的试验观察,增强UV-B、外源ABA及两因子共同作用对青杨的生物量积累、气体交换、内源ABA和UV吸收物质含量、抗氧化系统以及碳、氮含量和碳/氮比均产生显著影响。本试验中,青杨的两个种群分别来自中国西南部的不同海拔地区,高海拔种群来自青海大通而低海拔种群来自四川九寨。外源ABA的胁迫为直接喷施ABA到青杨叶片,而增强UV-B胁迫是利用平方波系统分别保证青杨苗暴露于外界UV-B强度和两倍于外界UV-B强度下。 研究结果显示,增强UV-B显著的降低了两个青杨种群的株高、基茎、总叶面积和总生物量等生长指标,同时也导致其A、gs、E和叶片中碳含量的减少。而显著增加了SOD和过氧化物酶(GPx)活性水平,诱导了过氧化氢(H2O2)和MDA的显著增加,促进了UV吸收物质和不同器官中内源ABA含量的显著积累。另一方面,外源ABA引起了青杨光合同化速率的下降,SOD和GPx酶活性的增强,H2O2 和 MDA含量也表现出显著增加,同时,内源ABA含量得到显著累积。同低海拔种群相比,高海拔种群具有更加抗UV-B和外源ABA的特性。显著的UV-B和ABA的交互作用表现在A, E, SOD和GPx活性,以及叶片和根部的内源ABA等一系列指标中。在所有胁迫下,叶片中的碳和氮含量同其在茎和根中的含量显著相关,另外,叶片和茎中的氮含量同茎中的碳含量显著相关。 Sunlight is an indispensable environment factor for plants survival and development. Meanwhile, photosynthetic organisms need sunlight and are thus, inevitably, exposed to UV radiation. Especially for recent years, ultraviolet radiation, especially UV-B reaching the Earth’s surface increased because of depletion of ozone layer resulted from emission of NxO and CFC’s from human activities. On the other hand, the sensitivity of plants to UV-B radiation depends on the species, developmental stage and experimental conditions. In this experiment, two populations of Picea asperata Mast from different water background and two populations of Populus cathayana Rehder from different altitude background were selected as model plants to assess the effects of enhanced UV-B radiation. Morphological and physiological traits induced by enhanced UV-B in each plant species were observed and the different responses were discussed, furthermore the influences of drought and exogenous ABA on responses induced by enhanced UV-B were studied. The study could provide a strong theoretical evidence and scientific direction for the afforestation and rehabilitation of ecosystem. The results are as follows: 1. Different responses of two contrasting Picea asperata Mast. populations to enhanced ultraviolet-B (UV-B) radiation under well-watered and drought conditions were investigated. And the effects of enhanced UV-B on tolerance of drought were also observed in our study that the UV-B exposure may have alleviated some of the damage induced by drought. Two contrasting populations, originating from a wet and dry climate region in China, respectively, were employed in our study. Drought significantly decreased CO2 assimilation rate (A), stomatal conductance (gs) and effective PSII quantum yield (Y), while it significantly increased non-photochemical quenching (qN) and the activity of superoxide dismutase (SOD) in both populations. Compared with the wet climate population, the dry climate population was more acclimated to drought stress and showed much higher activities of SOD and ascorbate peroxidase (APX), and much lower levels of malondialdehyde (MDA) and electrolyte leakage. On the other hand, enhanced UV-B radiation also induced a significant decrease in the chlorophyll (Chl) content in both populations under well-watered conditions, and a significant increase in UV-absorbing compounds in the wet climate population. After one growing season of exposure to different UV-B levels and watering regimes, the increases in MDA and electrolyte leakage, as induced by drought, were less pronounced under the combination of UV-B and drought. In addition, an additive effect of drought and UV-B on A and gs was observed in the wet climate population, and on the activity of APX and qN in the dry climate population. 2. The significant effects of drought, enhanced UV-B radiation and their combination on Populus cathayana Rehd. growth and physiological traits were investigated in two populations, originating from high and low altitudes in south-west China. Our results showed that UV-B acts as an important signal allowing P. cathayana seedlings to respond to drought and that the combination of drought and UV-B may cause synergistically detrimental effects on plant growth in both populations. In both populations, drought significantly decreased biomass accumulation and gas exchange parameters, including A, gs, E and photosynthetic nitrogen use efficiency (PNUE). However, instantaneous water use efficiency (WUEi), transpiration efficiency (WUET), carbon isotope composition (δ13C) and nitrogen (N) content, as well as the accumulation of soluble protein, UV-absorbing compounds and abscisic acid (ABA) were significantly increased by drought. On the other hand, cuttings from both populations, when kept under enhanced UV-B radiation conditions, showed very similar changes in all above-mentioned parameters, as induced by drought. Compared with the low altitude population, the high altitude population was more tolerant to drought and enhanced UV-B, as indicated by the higher level of biomass accumulation, gas exchange, water-use efficiency, ABA concentration and UV-absorbing compounds. After one growing season of exposure to different UV-B levels and watering regimes, the decrease in biomass accumulation and gas exchange, induced by drought, was more pronounced under the combination of UV-B and drought. Significant interactions between drought and UV-B were observed in WUEi, WUET, δ13C, soluble protein, UV-absorbing compounds, ABA and in the leaf and stem N, as well as in the leaf and stem C/N ratio. 3. During one growing season, significant effects induced by enhanced UV-B radiation, exogenous ABA and their combination on biomass accumulation, gas exchange, endogenous ABA and UV-absorbing compounds concentrations, antioxidant system as well as carbon (C) content, nitrogen (N) content and C/N ratio were investigated in two contrasting Populus cathayana populations, originating from high and low altitudes in south-west China. Exogenous ABA was sprayed to the leaves and enhanced UV-B treatment was using a square-wave system to make the seedlings under ambient (1×) or twice ambient (2×) doses of biologically effective UV-B radiation (UV-BBE). Enhanced UV-B radiation significantly decreased height, basal diameter, total leaf area, total biomass, A, gs, E and carbon (C) content in leaves, and significantly increased activities of SOD and guaiacol peroxidase (GPx), hydrogen peroxide (H2O2) and malonaldehyde (MDA) content as well as the accumulation of UV-absorbing compounds and endogenous ABA concentrations among different organs in both populations. In contrast, exogenous ABA showed significant decrease in A and significant increases in activities of SOD and GPx, H2O2, MDA content and the endogenous ABA concentrations. Compared with the low altitude population, the high altitude population was more tolerant to enhanced UV-B and exogenous ABA. Significant interactions between UV-B and ABA were observed in A, E, activities of SOD and GPx, as well as in endogenous ABA in leaves and roots of both populations. Across all treatments, C and N content in leaves was strongly correlated with those were in stems and roots, respectively. Additionally, leaf and stem N content were significant correlated with stem C content.
Resumo:
植物功能生态学研究不仅提供了植物生理生态学与生态系统生态学的连接,还为植物种群生活史对策研究提供了材料。Westoby 等 (2002) 提出了利用植物功能性状变量的主导维度来确定和量化植物生活史的生态适应策略。在他们所提出四个主导维度中,叶大小-小枝大小是研究相对较少的一维;其内部各组分的关系、对环境的响应,以及与其它重要维度的关系,目前的理解非常有限。 本研究以贡嘎山不同海拔不同功能群物种为研究对象,采用种间比较和系统发生独立性比较等研究方法,系统研究了植物的功能特征及其相关性在不同生境及不同功能群间的差异,旨在分析不同功能群物种的叶大小-小枝大小的成本和收益。其研究结果将有助于我们理解植物生活史对策的进化,进而理解物种共存和维持物种多样性的机制。主要研究结果如下: 1. 叶大小-小枝大小关系 小枝茎横截面积与单叶面积和总叶面积均呈异速生长关系,即总叶面积和单叶面积的增加比茎横截面积的增加速度快。但是,总叶面积和叶片干重的增加却基本上与小枝茎干重的增加等速。系统发生独立性比较研究的结果与此相一致。表明,在某一给定的茎投入时,至少大叶大枝物种不比小叶小枝物种在支撑叶面积和叶片干重方面具有优势。同时,在某一给定的小枝茎投入时,常绿阔叶物种比落叶阔叶物种支撑更少的叶面积。在茎干重与总叶面积的关系中,落叶复叶物种比落叶单叶物种具有更高的y轴截距,表明复叶物种比单叶物种在展叶面积方面更有效。复叶物种与单叶物种相比,通常具有较大的叶大小和小枝大小。 2. 叶大小-叶数量关系 叶大小与数量间在不同的叶片习性、不同的叶片形态以及不同的生境类型的物种间均存在稳定的负的等速生长关系,且这种关系在系统发生独立性比较时依然成立。然而,在某一给定的出叶强度 (单位小枝的叶数量) 时,常绿阔叶物种比落叶物种具有更小的叶面积。而在给定体积基础上的出叶强度时,落叶复叶物种的叶面积显著大于落叶单叶物种,且复叶物种比单叶物种具有更大的叶大小和更小的出叶强度。但是,叶大小与数量间的关系在不同的海拔间并没有显著的差异。 3. 小枝大小-总叶面积关系 在不同的生活型或不同的生境下,小枝上总叶面积与茎干重和小枝干重均呈正的异速生长关系,且斜率显著小于1.0,表明小枝上总叶面积的增加都不能赶上小枝及茎大小的增加。这种“收益递减”表明随着小枝干重的增加,光截取的收益递减。此外,叶面积比 (总叶面积与小枝干重的比值) 与单叶干重呈显著负相关关系,系统发生独立性比较的结果与此相一致。根据以上结果,可以推测,大叶的物种在质量较好的生境中出现,而群落内部小枝茎的寿命较长的物种可以拥有较大的叶片。 4. 叶片色素浓度-LMA关系 随着海拔的升高,阔叶木本植物和草本植物的叶片色素浓度减少,叶绿素a/b和类胡萝卜素/叶绿素比值以及比叶重 (LMA) 增加。然而,在草本植物中的色素浓度、色素比值和LMA的变化比阔叶木本植物的更明显。同时,LMA与叶片色素浓度呈负相关关系,但是在落叶物种中的LMA对色素浓度的影响比常绿阔叶物种更强烈。总之,草本植物的叶片特征对海拔梯度的变化似乎比木本植物更敏感,LMA对叶片色素的保护作用在落叶物种中比在常绿阔叶物种显得更重要。这些结果表明不同生活型物种可能采取不同的保护机制来降低叶绿体器官的损伤和增加他们的碳获取能力。 Studies on plant functional ecology not only bridge plant eco-physiology and ecosystem functioning, but also enrich plant population biology. As pointed out by Westoby et al (2002), plant life history strategies can be identified and quantified by four leading dimensions of variations in plant functional traits, i.e., seed size/output, leaf mass per area and leaf life span, plant height, and leaf size-twig size. Compared to the other dimensions, the cost/benefit of the leaf size-twig size spectrum has scarcely been analyzed in relation to environmental gradients and life form types, and the adaptive significance of this spectrum is not fully understood. In the present study, the relationships between functional traits of plant twigs are determined for the species with different life forms along an altitudinal gradient of Gongga Mountain with both cross-species analysis and evolutionary divergence analysis. The primary objective of this study is to examine the cost/benefit of leaf size-twig size in plants. The study results are supposed to provide insights into the understanding of the mechanism of species coexistences. The results are shown in the following. 1. The relationship between leaf size and twig size Twig cross-sectional area allometrically scaled with both individual leaf area and total leaf area supported by the twigs. However, the increase in total lamina mass/area was generally proportional to the increase in stem mass. These correlations between trait variations were significant in both interspecies analysis and phylogenetically independent comparison (PIC) analysis, which indicated that thick-twigged/large-leaved species, at least, do not have an advantage in supporting leaf/lamina area and lamina mass for the same twig stem investment than thin-twigged/ small-leaved species. Meanwhile, the evergreen broad-leaved species supported a smaller leaf area for the same twig stem investment in terms of both cross-sectional area and stem mass than the deciduous species. The deciduous compound-leaved species have a higher y-intercept in the scaling relationship of twig stem mass versus total leaf area than the deciduous simple-leaved species, indicating that compound-leaved species were more efficient in displaying leaf area. The compound-leaved species were larger in both leaf size and twig size than their counterpart in the present study. 2. The relationship between leaf size and leaf number Significantly negative and isometric scaling relationships between leaf size and leafing intensity (leaf number per twig mass or volume) were found to be consistently conserved across species independent of leaf habit, leaf form and habitat type. The negative correlations between leaf size and leafing intensity were also observed across correlated evolutionary divergences. However, leaf area was smaller in the evergreen broad-leaved species at a given leafing intensity than in the deciduous species. The deciduous compound-leaved deciduous species were higher in leaf area than deciduous simple-laved species at a given volume-based leafing intensity. Moreover, the compound-leaved deciduous species were larger in leaf size but smaller in leafing intensity than their simple counterparts. No significant difference was found in the scaling relationships between altitudes. 3. The relationship between twig size and total leaf area Leaf area was found to scale positively and allometrically with both stem and twig mass (stem mass plus leaf mass) with slopes significantly smaller than 1.0, independent of life form and habitat type, indicating that the increase in total leaf area fails to keep pace with increasing twig size and stem size. This ‘diminishing returns’ suggests that the benefit of light intercept decreased with increasing twig mass. Moreover, the leaf area ratio (the ratio of total leaf area to stem or twig mass) correlated negatively with individual leaf mass. The results of PIC were consistent with the correlations. According to the results, it is speculated that large-leaved species may be favored when habitat is good and when stem longevity are long within community. 4. The relationship between leaf pigment concentrations and leaf mass per area With increasing altitude, the concentrations of pigments decreased, but the ratios of chlorophyll a/b and carotenoid/chlorophyll, and LMA increased, in both the broad-leaved woody species and herbaceous species groups. However, the changes in the pigment concentrations, ratios and LMA were more profound in the herbaceous species than in the woody species. In addition, pigment concentrations were negatively correlated with LMA in each life form type and in the pooled dataset. However, the LMA effect on leaf pigment concentrations was more profound in the deciduous species than in the evergreen braode-leaved species. In general, herbaceous species seemed more sensitive to the increasing altitude compared to woody species, and LMA seemed to be a more important mechanism for protecting leaf pigments in deciduous species than in evergreen broad-leaved species. These results suggested that the species with different life forms may employ different protective mechanisms to decrease the chloroplast apparatus damage and increase their carbon gain.