82 resultados para Soil electrical conductivity


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study investigates the ozonation of 17 alpha-ethinylestradiol (EE2) in aqueous solution. The affecting factors on the degradation of EE2 were studied and described in details, such as initial EE2 concentration, initial pH value and ozone concentration. In addition, some parameters such as pH. electrical conductivity, mineralization efficiency and degradation products were monitored during the process. The mineralization efficiency of EE2 could reach 53.9%. During the ozonation process the rapid decrease of pH and the sharp increase of electrical conductivity indicated the fort-nation of acidic by-products, small fragments and ions which were confirmed by high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GUMS) analysis. Results showed that there were intermediate products of smaller molecule with higher polarity produced during the course of EE2 degradation. Then a possible reaction pathway for EE2 degradation involving all intermediates detected is proposed. During the ozonation process EE2 was first oxidized into hydroxyl-semiquinone isomers which were subsequently degraded into low molecular weight compounds such as oxalic acid, malonate, glutarate, and so on. Furthermore. these organic acids are easily oxidized by ozone into carbon dioxide (CO2). This work shows that ozonation process is promising for the removal of EE2. The results can provide some useful information for the potential treatment of EE2 by ozonation in aqueous solution. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using first-principles band structure methods, we investigate the interactions between different donors in In2O3. Through the formation energy and transition energy level calculations, we find that an oxygen-vacancy creates a deep donor level, while an indium-interstitial or a tin-dopant induces a shallow donor level. The coupling between these donor levels gives rise to even shallower donor levels and leads to a significant reduction in their formation energies. Based on the analysis of the PBE0-corrected band structure and the molecular-orbital bonding diagram, we demonstrate these effects of donor-donor binding. In addition, total energy calculations show that these defect pairs tend to be more stable with respect to the isolated defects due to their negative binding energies. Thus, we may design shallow donor levels to enhance the electrical conductivity via the donor donor binding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

InGaN/GaN multi-quantum-well-structure laser diodes with an array structure are successfully fabricated on sapphire substrates. The laser diode consists of four emitter stripes which share common electrodes on one laser chip. An 800-mu m-long cavity is formed by cleaving the substrate along the < 1 (1) over bar 00 >. orientation using laser scriber. The threshold current and voltage of the laser array diode are 2A and 10.5 V, respectively. A light output peak power of 12W under pulsed current injection at room temperature is achieved. We simulate the electric properties of GaN based laser diode in a co-planar structure and the results show that minimizing the difference of distances between the different ridges and the n-electrode and increasing the electrical conductivity of the n-type GaN are two effective ways to improve the uniformity of carrier distribution in emitter stripes. Two pairs of emitters on a chip are arranged to be located near the two n-electrode pads on the left and right sides, and the four stripe emitters can laser together. The laser diode shows two sharp peaks of light output at 408 and 409 nm above the threshold current. The full widths at half maximum for the parallel and perpendicular far field patterns are 8 degrees and 32 degrees, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epitaxial growth of SiC on complex substrates was carried out at substrate temperature from 1200 degreesC to 1400 degreesC. Three kinds of new complex substrates, c-plane sapphire, AlN/sapphire, and GaN/AlN/sapphire, were used in this study. We obtained a growth rate in the range of 1-6 mum/h. Thick (6 mum) SIC epitaxial layers with no cracks were successfully obtained on AlN/sapphire and GaN/AlN/sapphire substrates. X-ray diffraction patterns have confirmed that single-crystal SiC was obtained on these complex substrates. Analysis of optical transmission spectra of the SIC grown on sapphire substrates shows the lowest-energy gap near 2.2 eV, which is the value for cubic SiC. The undoped SIC showed n-type electrical conductivity. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Temperature-dependent photoluminescence characteristics of non-polar m-plane ZnO and ZnMgO alloy films grown by metal organic chemical vapor deposition have been studied. The enhancement in emission intensity caused by localized excitons in m-plane ZnMgO alloy films was directly observed and it can be further improved after annealing in nitrogen. The concentration of Zn vacancies in the films was increased by alloying with Mg, which was detected by positron annihilation spectroscopy. This result is very important to directly explain why undoped Zn1-xMgxO thin films can show p-type conduction by controlling Mg content, as discussed by Li [Appl. Phys. Lett. 91, 232115 (2007)].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report fundamental changes of the radiative recombination in a wide range of n-type and p-type GaAs after diffusion with the group-I element Li. These optical properties are found to be a bulk property and closely related to the electrical conductivity of the samples. In the Li-doped samples the radiative recombination is characterized by emissions with excitation-dependent peak positions which shift to lower energies with increasing degree of compensation and concentration of Li. These properties are shown to be in qualitative agreement with fluctuations of the electrostatic potential in strongly compensated systems. For Li-diffusion temperatures above 700-800-degrees-C semi-insulating conditions with electrical resistivity exceeding 10(7) OMEGA cm are obtained for all conducting starting materials. In this heavy Li-doping regime, the simple model of fluctuating potentials is shown to be inadequate for explaining the. experimental observations unless the number of charged impurities is reduced through complexing with Li. For samples doped with low concentrations of Li, on the other hand, the photoluminescence properties are found to be characteristic of impurity-related emissions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Boron-doped hydrogenated silicon films with different gaseous doping ratios (B_2H_6/SiH_4) were deposited in a plasma-enhanced chemical vapor deposition (PECVD) system. The microstructure of the films was investigated by atomic force microscopy (AFM) and Raman scattering spectroscopy. The electrical properties of the films were characterized by their room temperature electrical conductivity (σ) and the activation energy (E_a). The results show that with an increasing gaseous doping ratio, the silicon films transfer from a microcrystalline to an amorphous phase, and corresponding changes in the electrical properties were observed. The thin boron-doped silicon layers were fabricated as recombination layers in tunnel junctions. The measurements of the Ⅰ-Ⅴ characteristics and the transparency spectra of the junctions indicate that the best gaseous doping ratio of the recombination layer is 0.04, and the film deposited under that condition is amorphous silicon with a small amount of crystallites embedded in it. The junction with such a recombination layer has a small resistance, a nearly ohmic contact, and a negligible optical absorption.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epitaxial growth of SiC on complex substrates was carried out at substrate temperature from 1200 degreesC to 1400 degreesC. Three kinds of new complex substrates, c-plane sapphire, AlN/sapphire, and GaN/AlN/sapphire, were used in this study. We obtained a growth rate in the range of 1-6 mum/h. Thick (6 mum) SIC epitaxial layers with no cracks were successfully obtained on AlN/sapphire and GaN/AlN/sapphire substrates. X-ray diffraction patterns have confirmed that single-crystal SiC was obtained on these complex substrates. Analysis of optical transmission spectra of the SIC grown on sapphire substrates shows the lowest-energy gap near 2.2 eV, which is the value for cubic SiC. The undoped SIC showed n-type electrical conductivity. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A three-dimensional MHD solver is described in the paper. The solver simulates reacting flows with nonequilibrium between translational-rotational, vibrational and electron translational modes. The conservation equations are discretized with implicit time marching and the second-order modified Steger-Warming scheme, and the resulted linear system is solved iteratively with Newton-Krylov-Schwarz method that is implemented by PETS,: package. The results of convergence tests arc plotted, which show good scalability and convergence around twice faster when compared with the DPLR method. Then five test runs are conducted simulating the experiments done at the NASA Ames MHD channel, and the calculated pressures, temperatures, electrical conductivity, back EMF, load factors and flow accelerations are shown to agree with the experimental data. Our computation shows that the electrical conductivity distribution is not uniform in the powered section of the MHD channel, and that it is important to include Joule heating in order to calculate the correct conductivity and the MHD acceleration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polypropylene (PP) microporous membranes were successfully prepared by swift heavy ion irradiation and track-etching. Polypropylene foils were irradiated with Au-197 ions of kinetic energy 11.4 MeV.u(-1) (total energy of 2245.8 MeV) and fluence 1x10(8) ions.cm(-2) at normal incidence. The damaged regions produced by the gold ions along the trajectories were etched in H2SO4 and K2Cr2O7 solutions leading to the formation of cylindrical pores in the membranes. The pore diameters of the PP microporous membranes increased from 380 to 1610 nm as the etching time increased from 5 to 30 min. The surface and cross-section morphologies of the porous membranes were characterized by scanning electron microscopy (SEM). The micropores in the membranes were found to be cylindrical in shape, homogeneous in distribution, and equal in size. Some mathematical relations of the porosity of the PP microporous membranes were established by analytic derivation. The microporous membranes were used in lithium-ion batteries to measure their properties as separators. The electrical conductivity of the porous membrane immersed in liquid electrolyte was found to be comparable to that of commercial separators by electrochemical impedance spectroscopy (EIS). The results showed that the porosity and electrical conductivity were dependent on the ion fluence and etching time. By adjusting these two factors, microporous membranes with good porosity and electrical conductivity were made that met the requirements for commercial use.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ni - V - O series catalysts for the oxidative dehydrogenation (ODH) of propane were prepared and characterized by BET, XRD, H-2- TPR, O-2-TPD-MS and electrical conductivity. At 425 degreesC a C3H6 selectivity of 49.9% was observed on Ni0.9V0.1OY at a C3H8 conversion of 19.4%, and the obtained selectivity is almost two times higher than that over NiO at the roughly same conversion of C3H8. The mobile oxygen species created by the interaction of NiO and V2O5 has been found in the composite catalysts by O-2-TPD-MS and electrical conductivity studies, which seems to be responsible for the enhanced selectivity of the propane oxidative dehydrogenation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose the exploding-reflector method to simulate a monostatic survey with a single simulation. The exploding reflector, used in seismic modeling, is adapted for ground-penetrating radar (GPR) modeling by using the analogy between acoustic and electromagnetic waves. The method can be used with ray tracing to obtain the location of the interfaces and estimate the properties of the medium on the basis of the traveltimes and reflection amplitudes. In particular, these can provide a better estimation of the conductivity and geometrical details. The modeling methodology is complemented with the use of the plane-wave method. The technique is illustrated with GPR data from an excavated tomb of the nineteenth century.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Graphite, inexpensive and available in large quantities, unfortunately does not readily exfoliate to yield individual graphene sheets. Here a mild, one-step electrochemical approach for the preparation of ionic-liquid-functionalized graphite sheets with the assistance of an ionic liquid and water is presented. These ionic-liquid-treated graphite sheets can be exfoliated into functionalized graphene nanosheets that can not only be individuated and homogeneously distributed into polar aprotic solvents, but also need not be further deoxidized. Different types of ionic liquids and different ratios of the ionic liquid to water can influence the properties of the graphene nanosheets. Graphene nanosheet/polystyrene composites synthesized by a liquid-phase blend route exhibit a percolation threshold of 0.1 vol % for room temperature electrical conductivity, and, at only 4.19 vol %, this composite has a conductivity of 13.84 S m(-1), which is 3-15 times that of polystyrene composites filled with single-walled carbon nanotubes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The formation of reversed micelles and the roles of extractant and extracted complexes were investigated in the Cyanex923/n-heptane/H2SO4 system. Interfacial tension (gamma), electrical conductivity (kappa), and water content measurements showed that Cyanex923 had a tendency to self-assemble, forming reversed micelles. The changes in electrical conductivity with concentration of H2SO4 in the organic phase (CH2SO4,(0)) exhibited an S-type curve: a correlation was found between the change in electrical conductivity and the water content as a function of CH2SO4,(0),.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polycrystalline nanotubular Bi2Te3 could be prepared via a high-temperature solution process using nanoscale tellurium, decomposed from trioctylphosphine oxide (TOPO) extracted tellurium species (Te-TOPO), as sacrificial template. The formation of such tubular structure is believed to be the result of outward diffusion of Te during the alloying process. The electrical properties (Seebeck coefficient and electrical conductivity) of the polycrystalline nanotubular Bi2Te3 have been studied and the experimental results show that the electrical conductivity is approximately three orders of magnitude smaller than bulk bismuth telluride materials mainly due to the much larger resistance brought by the insufficient contact between the nanotubular structures.