33 resultados para SILVER(I) CATIONS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A successful analysis of silver was reported utilizing laser desorption/ionization time-of-flight mass spectrometry (LDI/TOF-MS) in this paper, The silver cluster ions Ag-n(+) and AgnO+ (n=2 similar to 5) were formed during laser desorption/ionization. In the presence of I-, K+ and Na+, the peaks corresponding, to the cluster ions [AgnIn-1](+) (n=2 similar to 6) and the adduct ions [AgI](+), [AgI]Na+ and [AgI]K+ were observed in the positive ion spectrum; the peaks corresponding to [AgnIn+1](-) (n=1 similar to 3) were found in the negative ion spectrum, all of which accompanied by sliver isotope distribution, The formation of silver cluster ions was accomplished through two-stage reaction: the first step was the generation of clusters, which was followed by the processes of photoionization and ion/molecule reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the adsorption of Ag+ and hydrated Ag+ cations on clean Si(111) surface were investigated by using cluster (Gaussian 03) and periodic (DMol(3)) ab initio calculations. Si(111) surface was described with cluster models (Si14H17 and Si22H21) and a four-silicon layer slab with periodic boundary conditions. The effect of basis set superposition error (BSSE) was taken into account by applying the counterpoise correction. The calculated results indicated that the binding energies between hydrated Ag+ cations and clean Si(111) surface are large, suggesting a strong interaction between hydrated Ag+ cations and the semiconductor surface. With the increase of number, water molecules form hydrogen bond network with one another and only one water molecule binds directly to the Ag+ cation. The Ag+ cation in aqueous solution will safely attach to the clean Si(111) surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated growth of silver clusters on three different, i.e. normally cleaved, thermally oxidized and Ar+ ion sputtered highly oriented pyrolytic graphite (HOPG), surfaces. Scanning tunneling microscopy (STM) observations reveal that uniformly sized and spaced Ag clusters only form on the sputtered surface. Ar+ sputtering introduces relatively uniform surface defects compared to other methods. These defects are found to serve as preferential sites for Ag cluster nucleation, which leads to the formation of uniform clusters. (c) 2005 Elsevier B.V. All rights reserved.