61 resultados para RANDOM SKEWERS
Resumo:
The isoscalar giant monopole resonance (ISGMR) in nuclei is studied in the framework of a fully consistent relativistic continuum random phase approximation (RCRPA). In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function technique. The negative energy states in the Dirac sea are also included in the single particle Green's function in the no-sea approximation. The single particle Green's function is calculated numerically by a proper product of the regular and irregular solutions of the Dirac equation. The strength distributions in the RCRPA calculations, the inverse energy-weighted sum rule m(-1) and the centroid energy of the ISGMR in Sn-120 and Pb-208 are analysed. Numerical results of the RCRPA are checked with the constrained relativistic mean field model and relativistic random phase approximation with a discretized spectrum in the continuum. Good agreement between them is achieved.
Resumo:
Range and load play key roles in the problem of attacks on links in random scale-free (RSF) networks. In this paper we obtain the approximate relation between range and load in RSF networks by the generating function theory, and then give an estimation about the impact of attacks on the efficiency of the network. The results show that short-range attacks are more destructive for RSF networks, and are confirmed numerically.
Resumo:
This paper presents the vulnerabilities of single event effects (SEEs) simulated by heavy ions on ground and observed oil SJ-5 research satellite in space for static random access memories (SRAMs). A single event upset (SEU) prediction code has been used to estimate the proton-induced upset rates based oil the ground test curve of SEU cross-section versus heavy ion linear energy transfer (LET). The result agrees with that of the flight data.
Resumo:
A fully consistent relativistic continuum random phase approximation (RCRPA) is constructed, where the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single-particle Green's function technique. The full consistency of the calculations is achieved that the same effective Lagrangian is adopted for the ground state and the excited states. The negative energy states in the Dirac sea are also included in the single-particle Green's function in the no-sea approximation. The currents from the vector meson and photon exchanges and the Coulomb interaction in RCRPA are treated exactly. The spin-orbit interaction is included naturally in the relativistic frame. Numerical results of the RCRPA are checked with the constrained relativistic mean-field theory. We study the effects of the inconsistency, particularly the currents and Coulomb interaction in various collective multipole excitations.
Resumo:
The fully consistent relativistic continuum random phase approximation (RCRPA) has been constructed in the momentum representation in the first part of this paper. In this part we describe the numerical details for solving the Bethe-Salpeter equation. The numerical results are checked by the inverse energy weighted sum rules in the isoscalar giant monopole resonance, which are obtained from the constraint relativistic mean field theory and also calculated with the integration of the RCRPA strengths. Good agreement between the misachieved. We study the effects of the self-consistency violation, particularly the currents and Coulomb interaction to various collective multipole excitations. Using the fully consistent RCRPA method, we investigate the properties of isoscalar and isovector collective multipole excitations for some stable and exotic from light to heavy nuclei. The properties of the resonances, such as the centroid energies and strength distributions are compared with the experimental data as well as with results calculated in other models.
Resumo:
A fully consistent relativistic continuum random phase approximation (RCRPA) is constructed in terms of the Green's function technique. In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function, which includes also the negative states in the Dirac sea in the nose aapproximation. The theoretical formalism of RCRPA and numerical details are presented. The single particle Green's function is calculated numerically by a proper product of regular and irregular solutions of the Dirac equation. The numerical details and the formalism of RCRPA in the momentum representation are presented.
Resumo:
Random multimode lasers are achieved in 4-(dicyanomethylene)-2-tert-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped polystyrene thin films by introducing silicon dioxide (SiO2) nanoparticles as scatterers. The devices emit a resonance multimode peak at a center wavelength of 640 nm with a mode linewidth less than 0.87 nm. The threshold excitation intensity is as low as 0.25 mJ pulse(-1) cm(-2). It can be seen that the microscopic random resonance cavities can be formed by multiple scattering of SiO2 nanoparticles.
Resumo:
A random lasing emission from 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped polystyrene (PS) thin films was realized by the scattering role of ZnO nanorods. The device was fabricated by spin-coating DCJTB doped PS on ZnO nanorods. The ZnO nanorods were grown on indium-tin-oxide (ITO) glass substrate by hydrothermal synthesis method. It can be seen that the device emits a resonance multimode peak at center wavelength of 630 nm with a mode line-width of less than 0.23 nm and exhibits threshold excitation intensity as low as 0.375 mJ pulse(-1) cm(-2). The agreement of the dependence of threshold pumped intensity on the excitation area with the random laser theory indicates that the lasing emission realized here is random laser. Our results demonstrate that the nanostructured ZnO nanorods are promising candidate as alternative sources of coherent light emission to realize organic lasers.
Resumo:
A series of biodegradable polyurethanes (PUs) are synthesized from the copolymer diols prepared from L-lactide and epsilon-caprolactone (CL), 2,4-toluene diisocyanate, and 1,4-butanediol. Their thermal and mechanical properties are characterized via FTIR, DSC, and tensile tests. Their T(g)s are in the range of 28-53 degrees C. They have high modulus, tensile strength, and elongation ratio at break. With increasing CL content, the PU changes from semicrystalline to completely amorphous. Thermal mechanical analysis is used to determine their shape-memory property. When they are deformed and fixed at proper temperatures, their shape-recovery is almost complete for a tensile elongation of 150% or a compression of 2-folds. By changing the content of CL and the hard-to-soft ratio, their T(g)s and their shape-recovery temperature can be adjusted. Therefore, they may find wide applications.
Resumo:
The authors report a random lasing emission from 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran doped polystyrene thin films by introducing polystyrene nanoparticles. The aspects of concentration and diameter of polystyrene nanoparticles have been intensively investigated and found that the lasing occurs due to the scattering role of polystyrene nanoparticles. The devices emit a resonance multimode peak centered at a wavelength of 630 nm with a mode linewidth of less than 0.35 nm and exhibit threshold excitation intensity of as low as 0.06 mJ pulse(-1) cm(-2). The microscopic laser cavities formed by multiple scattering have been captured. The demonstration of random laser opens up the possibility of using organic scattering as alternative sources of coherent light emission.
Resumo:
Thermal and crystalline properties of random copolymer of epsilon-caprolactone (CL) and 2,2-dimethyl trimethylene carbonate (DTC) prepared by lanthanum tris(2,6-di-tert-butyl-4-methylphenolate) (La(OAr)(3)) have been investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and wide-angle X-ray diffraction (WAXD). Fox equation interprets the relationship between glass transition temperature (T-g) and copolymer compositions. T-g decreases from PDTC (16.7degreesC) to PCL (-65.1degreesC), reflecting the internal plasticizing effect of CL units on DTC units in the copolymers. The introduction of CL units to PDTC can effectively improve its heat resistance. Small amount of DTC (5% molar) in PCL chain improves the mechanical properties of the polymer, which had elongation of 1000, much higher than that of PCL (8.8).
Resumo:
A series of novel polyarylethersulfone (AB)(n) block copolymers with different segment lengths have been synthesized by nucleophilic solution polycondensation of phenoxide-terminated and fluorine-terminated oligomers; random copolymers have been prepared over the whole composition ranges. The structures of the resultant copolymers have been confirmed by FTIR, C-13 NMR spectra and differential scanning calorimetry (DSC). Compared with two homopolymers and random copolymers, the block copolymers of this study possess excellent thermal stability (5% thermal decomposition under nitrogen atmosphere above 500 C) and high glass transition temperatures, and have a wide melt-processing temperature range. They may become a new class of mouldable high performance thermoplastics. (C) 2001 Society of Chemical Industry.
Resumo:
Blends of linear low-density polyethylene (LLDPE) and poly(ethylene-co-methacrylic acid) (EMA) random copolymer were studied by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and excimer fluorescence. In binary blends, crystallization of EMA was studied, and no modification of crystal structure was detected. In excimer fluorescence measurements, emission intensities of blends of EMA and naphthalene-labeled LLDPE were measured. The ratio of the excimer emission intensity (I-D) to the emission intensity of the isolated "monomer" (I-M) decreases upon addition of EMA, indicating that PE segments of EMA interpenetrate into the amorphous phase of LLDPE. (C) 1998 Published by Elsevier Science Ltd,. All rights reserved.
Resumo:
Compatibilization of blends of Linear low-density polyethylene (LLDPE)-poly(methyl methacrylate) (PMMA) and LLDPE-copolymer of methyl methacrylate (MMA) and 4-vinylpyridine (poly(MMA-co-4VP) with poly(ethylene-co-methacrylic acid) (EMAA) have been studied. Mechanical properties of the LLDPE-PMMA blends increase upon addition of EMAA. In order to further improve interfacial adhesion of LLDPE and PMMA, 4-vinyl pyridine units are introduced into PMMA chains, or poly(MMA-co-4VP) is used as the polar polymer. In LLDPE-poly(MMA-co-4VP)-EMAA blends, interaction of MAA in EMAA with 4VP of poly(MMA-co-4VP) causes a band shift in the infrared (IR) spectra. Chemical shifts of N-1s binding energy in X-ray photoelectronic spectroscopy (XPS) experiments indicate a transfer of proton from MAA to 4VP. Scanning electron microscopy (SEM) pictures show that the morphology of the blends were improved upon addition of EMAA. Nonradiative energy transfer (NRET) fluorescence results attest that there exists interdiffusion of chromophore-labeled LLDPE chains and chromophore-labeled poly(MMA-co-4VP) chains in the interface. Based on experimental results, the mechanism of compatibilization is studied in detail. Compatibilization is realized through the interaction between MAA in EMAA with 4VP in poly(MMA-co-4VP). (C) 1999 John Wiley & Sons, Inc.