130 resultados para Quadratic error gradient
Resumo:
The close form solutions of deflections and curvatures for a film-substrate composite structure with the presence of gradient stress are derived. With the definition of more precise kinematic assumption, the effect of axial loading due to residual gradient stress is incorporated in the governing equation. The curvature of film-substrate with the presence of gradient stress is shown to be nonuniform when the axial loading is nonzero. When the axial loading is zero, the curvature expressions of some structures derived in this paper recover the previous ones which assume the uniform curvature. Because residual gradient stress results in both moment and axial loading inside the film-substrate composite structure, measuring both the deflection and curvature is proposed as a safe way to uniquely determine the residual stress state inside a film-substrate composite structure with the presence of gradient stress.
Resumo:
The experimental investigation of the thermocapillary drop migration in a vertical temperature gradient uns performed on ground. Silicon oil and pure soybean oil were used as experimental medium in drops and as continuous phases, respectively, in the present experiment. The drop migration, under the combined effects of buoyancy: and thermocapillarity, was studied for middle Reynolds numbers in order of magnitude O(10(1)). The drop migration velocities depending on drop diameters were obtained. The present experimental results show relatively small migration velocity in comparison with the one suggested by Young et nl. for linear theory of small Reynolds number. An example of flow patterns inside the drop was observed by PIV method.
Resumo:
A ground-experiment study on the motions of solid particles in liquid media with vertical temperature gradient is performed in this paper. The movement of solid spheres toward the heating end of a close cell is observed. The behavior and features of the motions examined are quite similar to thermocapillary migration of bubbles and drops in a liquid. The motion velocities of particles measured are about 10(-3) to 10(-4) mm\s. The velocity is compared with the velocity of particles floated in two liquid media. The physical mechanism of motion is explored.
Resumo:
We outline a procedure for obtaining solutions of certain boundary value problems of a recently proposed theory of gradient elasticity in terms of solutions of classical elasticity. The method is applied to illustrate, among other things, how the gradient theory can remove the strain singularity from some typical examples of the classical theory.
Resumo:
A new mathematical model for the transient flow in the composite low permeability is established. It is solved by FEM with different boundary conditions such as infinite, circular closed and constant pressure boundary conditions. The typical curves for transient wellbore pressure have been presented. It is shown that the pressure and pressure derivative curves with composite start-up pressure gradients have different slopes which are depended on the start-up pressure gradients and the mobility radios in different regions. The boundary effects are the same as the normal reservoirs without start-up pressure gradients. The study provides a new tool to analyze the transient pressure test data in the low permeability reservoir.
Resumo:
A new strain gradient theory which is based on energy nonlocal model is proposed in this paper, and the theory is applied to investigate the size effects in thin metallic wire torsion, ultra-thin beam bending and micro-indentation of polycrystalline copper. First, an energy nonlocal model is suggested. Second, based on the model, a new strain gradient theory is derived. Third, the new theory is applied to analyze three representative experiments.
Resumo:
In this paper, the gamma-gamma probability distribution is used to model turbulent channels. The bit error rate (BER) performance of free space optical (FSO) communication systems employing on-off keying (OOK) or subcarrier binary phase-shift keying (BPSK) modulation format is derived. A tip-tilt adaptive optics system is also incorporated with a FSO system using the above modulation formats. The tip-tilt compensation can alleviate effects of atmospheric turbulence and thereby improve the BER performance. The improvement is different for different turbulence strengths and modulation formats. In addition, the BER performance of communication systems employing subcarrier BPSK modulation is much better than that of compatible systems employing OOK modulation with or without tip-tilt compensation.
Resumo:
We analyse further the entanglement purification protocol proposed by Feng et al. (Phys. Lett. A 271 (2000) 44) in the case of imperfect local operations and measurements. It is found that this protocol allows of higher error threshold. Compared with the standard entanglement purification proposed by Bennett et al. [Phys. Rev. Lett. 76 (1996) 722], it turns out that this protocol is remarkably robust against the influences of imperfect local operations and measurements.
Resumo:
A novel technique of controlling the evolution of the filamentation was experimentally demonstrated in an argon gas-filled tube. The entrance of the filament was heated by a furnace and the other end was cooled with air, which resulted in the temperature gradient distribution along the tube. The experimental results show that multiple filaments are merged into a single filament and then no filament by only increasing the temperature at the entrance of the filament. Also, the filament can appear and disappear after increasing the local temperature and input pulse energy in turn. This technique offers another degree of freedom to control the filamentation and opens a new way for multi-mJ level monocycle pulse generation through filamentation in the noble gas.
Resumo:
A novel method to construct a quality map, called modulation-phase-gradient variance (MPGV), is proposed, based on modulation and the phase gradient. The MPGV map is successfully applied to two phase-unwrapping algorithms - the improved weighted least square and the quality-guided unwrapping algorithm. Both simulated and experimental data testify to the validity of our proposed quality map. Moreover, the unwrapped-phase results show that the new quality map can have higher reliability than the conventional phase-derivative variance quality map in helping to unwrap noisy, low-modulation, and/or discontinuous phase maps. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A novel method to construct a quality map, called modulation-phase-gradient variance (MPGV), is proposed, based on modulation and the phase gradient. The MPGV map is successfully applied to two phase-unwrapping algorithms - the improved weighted least square and the quality-guided unwrapping algorithm. Both simulated and experimental data testify to the validity of our proposed quality map. Moreover, the unwrapped-phase results show that the new quality map can have higher reliability than the conventional phase-derivative variance quality map in helping to unwrap noisy, low-modulation, and/or discontinuous phase maps. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We demonstrate theoretically and experimentally compensation for positive Kerr phase shifts with negative phases generated by cascade quadratic processes. Experiments show correction of small-scale self-focusing and whole-beam self-focusing in the spatial domain and self-phase modulation in the temporal domain. (C) 2001 Optical Society of America.
Resumo:
Quadratic optical nonlinearity chi((2)) can be exploited in femtosecond lasers and regarded as a significant new degree of freedom for the design of short-pulse sources. We will review our recent progress on developing nonlinear quadratic technologies for femtosecond lasers. Our nonlinear laser technology offers new properties for femtosecond lasers, including optical parametric amplifier with novel working regime, efficient second harmonic generation, and time telescope.