151 resultados para Potential energy
Resumo:
Nanoindentation simulations on a binary metallic glass were performed under various strain rates by using molecular dynamics. The rate-dependent serrated plastic flow was clearly observed, and the spatiotemporal behavior of its underlying irreversible atomic rearrangement was probed. Our findings clearly validate that the serration is a temporally inhomogeneous characteristic of such rearrangements and not directly dependent on the resultant shear-banding spatiality. The unique spatiotemporal distribution of shear banding during nanoindentation is highlighted in terms of the potential energy landscape (PEL) theory.
Resumo:
Based on the sub-region generalized variational principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method.
Resumo:
Material potential energy is well approximated by '' pair-functional '' potentials. During calculating potential energy, the orientational and volumetric components have been derived from pair potentials and embedding energy, respectively. Slip results in plastic deformation, and slip component has been proposed accordingly. Material is treated as a component assembly, and its elastic, plastic and damage properties are reflected by different components respectively. Material constitutive relations are formed by means of assembling these three kinds of components. Anisotropy has been incorporated intrinsically via the concept of component. Theoretical and numerical results indicate that this method has the capacity of reproducing some results satisfactorily, with the advantages of physical explicitness, etc. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The thermal expansion coefficient (TEC) of an ideal crystal is derived by using a method of Boltzmann statistics. The Morse potential energy function is adopted to show the dependence of the TEC on the temperature. By taking the effects of the surface relaxation and the surface energy into consideration, the dimensionless TEC of a nanofilm is derived. It is shown that with decreasing thickness, the TEC can increase or decrease, depending on the surface relaxation of the nanofilm.
Resumo:
A systematic study on the available data of 26 metallic glasses shows that there is an intrinsic correlation between fragility of a liquid and bulk modulus of its glass. The underlying physics can be rationalized within the formalism of potential energy landscape thermodynamics. It is surprising to find that the linear correlation between the fragility and the bulk-shear modulus ratio exists strictly at either absolute zero temperature or very high frequency. Further analyses indicate that a real flow event in bulk metallic glasses is shear dominant, and fragility is in inverse proportion to shear-induced bulk dilatation. Finally, extension of these findings to nonmetallic glasses is discussed.
Resumo:
The potential energy in materials is well approximated by pair functional which is composed of pair potentials and embedding energy. During calculating material potential energy, the orientational component and the volumetric component are derived respectively from pair potentials and embedding energy. The sum of energy of all these two kinds of components is the material potential. No matter how microstructures change, damage or fracture, at the most level, they are all the changing and breaking atomic bonds. As an abstract of atomic bonds, these components change their stiffness during damaging. Material constitutive equations have been formulated by means of assembling all components' response functions. This material model is called the component assembling model. Theoretical analysis and numerical computing indicate that the proposed model has the capacity of reproducing some results satisfactorily, with the advantages of great conceptual simplicity, physical explicitness, and intrinsic induced anisotropy, etc.
Resumo:
Strong mechanical forces can, obviously, disrupt cell-cell and cell-matrix adhesions, e.g., cyclic uniaxial stretch induces instability of cell adhesion, which then causes the reorientation of cells away from the stretching direction. However, recent experiments also demonstrated the existence of force dependent adhesion growth (rather than dissociation). To provide a quantitative explanation for the two seemingly contradictory phenomena, a microscopic model that includes both integrin-integrin interaction and integrin-ligand interaction is developed at molecular level by treating the focal adhesion as an adhesion cluster. The integrin clustering dynamics and integrin-ligand binding dynamics are then simulated within one unified theoretical frame with Monte Carlo simulation. We find that the focal adhesion will grow when the traction force is higher than a relative small threshold value, and the growth is dominated by the reduction of local chemical potential energy by the traction force. In contrast, the focal adhesion will rupture when the traction force exceeds a second threshold value, and the rupture is dominated by the breaking of integrin-ligand bonds. Consistent with the experiments, these results suggest a force map for various responses of cell adhesion to different scales of mechanical force. PMID: 20542514
Resumo:
利用一简单的经典静电模型研究了甲烷团簇纯库仑爆炸情况下产生的离子平均动能。研究表明,甲烷团簇爆炸后离子获得的平均动能和离子的初始平均静电势能的比值,与团簇的尺寸大小无关。这意味着在甲烷团簇纯库仑爆炸近似下,不必使用分子动力学模拟,离子获得的动能可以通过这一比值以及离子的初始静电势能进行估算。给出了不同碳离子价态下的离子平均动能和其初始平均静电势能的比值。
Resumo:
利用解析和数值方法计算了Z形磁阱的囚禁势,发现当囚禁中心和芯片表面距离较远时(该距离和Z形线中部导线的一半长度相差不超过一个量级),势阱的深度不能近似表示成偏置磁场By对应的能量,而要减去囚禁中心的势能高度;而增加By进行磁阱压缩到一定值时,势阱深度反而会下降.此外介绍了原子芯片的制作方法,以及利用原子芯片上Z形磁阱囚禁中性87Rb原子的实验装置和实验过程.最终有2×10^6个^87Rb原子被转移到Z形磁阱中.
Resumo:
本文以葡甘聚糖为试材,运用分子模拟同仪器分析相结合的手段,预测了葡甘聚糖分子链的高级结构,分析了无机分子对其结构、性能的影响,探讨了葡甘聚糖与卡拉胶微观作用机理。 主要研究内容与结果如下: 1. 葡甘聚糖单链高级结构的预测 利用Hyperchem7.0、VM2.0分子结构计算软件采用分子动力学和分子力学的方法,以真空中葡甘聚糖单链为研究模型,研究了聚合度、取代基对动态构象的影响及影响链构象的作用力。首次提出了KGM链的动态模型,得到了以下结果:聚合度影响其链形态和稳定性,对于高聚合度的魔芋葡甘聚糖来说,其链呈现无规卷曲状态且稳定性下降,在整个动态运动过程中KGM链脱乙酰基前后都呈现无规卷曲状态,而且其伸展和卷曲的变化是周期性的,表现出了很好的柔性,说明乙酰基不是影响其链形态的主要因素,二面角能和静电作用是真空中影响单链构象的主要的键合作用力和非键合作用力,但是乙酰基对氢键作用的影响较大。 2. 无机分子对葡甘聚糖溶液体系结构性能影响的研究 利用Hyperchem7.0分子结构计算软件,采用分子动力学及红外光谱、核磁共振等技术,对无机分子对葡甘聚糖体系的影响进行分析,很好的解释了性能变化的结构原因,结合以往的研究及参考文献得出以下结论:KGM在碱性条件下由于化学作用乙酰基的脱除分子间氢键作用的加强提高了凝胶强度,分子间氢键的主要作用位点是葡萄糖 的O(6)与甘露糖的O(2)之间;硼与KGM形成的分子内和分子间配合作用及分子间作用力氢键的增强是KGM特性粘度和致密性提高的主要原因,分子间型配位反应发生在葡萄糖和甘露糖两个糖环之间的几率最大;加入尿素后,表现为宏观性能的下降,葡甘聚糖氢键网络被破坏,氢键的作用位点由甘露糖的O(2)、O(3)变为O(4),葡萄糖的O(3)、O(6)变为O(1)、O(2)。 3. 葡甘聚糖与卡拉胶共混作用的研究 利用Hyperchem7.0分子结构计算软件运用分子动力学方法、DSC、红外光谱技术,研究了葡甘聚糖与卡拉胶的微观结构及作用过程,揭示了性能变化的结构原因和分子之间的作用位点。得出了以下结论:葡甘聚糖同卡拉胶共混后通过分子间氢键作用形成了强度高、弹性好的热可逆凝胶。其凝胶强度与单一胶相比较,凝胶特性得到了很大的改善。通过红外光谱可以发现形成复合溶胶后化学基团没有发生本质上的改变,但是氢键缔合作用增强;通过DSC分析可以发现仅出现1个吸热峰,两种生物大分子达到了相容的结果,经过分子动力学模拟表明,与单一体系比较,葡甘聚糖与卡拉胶共混时稳定性提高,分子间氢键作用力明显增强,主要的作用位点是葡甘聚糖的上甘露糖的O(2)、O(4)、O(6)、乙酰基位置及卡拉胶上糖环上的 O(6)、硫酸基。
Resumo:
Size modification of Au nanoparticles (NPs), deposited on the Au-thick film surface and irradiated by slow highly charged ions (SHCI) 40Arq+ (3 6 q 6 12) with fixed low dose of 4.3 1011 ions/cm2 and various energy ranging from 74.64 to 290.64 keV at room temperature (293.15 K), was investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The effect of projectile kinetic energy on the modified size of NPs was explored by an appropriate choice of the fixed process parameters such as ion flux, irradiation temperature, incident angle, irradiation time, etc. The morphological changes of NPs were interpreted by models involving collisional mixing, Ostwald ripening (OR) and inverse Ostwald ripening (IOR) of spherical NPs on a substrate. A critical kinetic energy as well as a critical potential energy of the projectile in the Au NPs size modification process were observed.
Resumo:
The generalized liquid drop model (GLDM) is extended to the region around deformed shell closure (270)Hs by taking into account the excitation energy EI+ of the residual daughter nucleus and the centrifugal potential energy V-cen(r). The branching ratios of alpha decays from the ground state of a parent nucleus to the ground state 0(+) of its deformed daughter nucleus and to the first excited state 2(+) are calculated in the framework of the GLDM. The results support the proposal that a measurement of alpha spectroscopy is a feasible method to extract information on nuclear deformation of superheavy nuclei around the deformed nucleus (270)Hs.
Resumo:
Highly charged ions (HCls) carrying high Coulomb potential energy (E-p) could cause great changes in the physical and chemical properties of material surface when they bombard on the solid surface. In our work, the secondary ion yield dependence on highly charged Pbq+ (q = 4-36) bombardment on Al surface has been investigated. Aluminum films (99.99%) covered with a natural oxide film was chosen as our target and the kinetic energy (E-k) was varied between 80 keV and 400 keV. The yield with different incident angles could be described well by the equation developed by us. The equation consists of two parts due to the kinetic sputtering and potential sputtering. The physical interpretations of the coefficients in the said equation are discussed. Also the results on the kinetic sputtering produced by the nuclear energy loss on target Surface are presented.