57 resultados para Optical pattern recognition -- Mathematical models
Resumo:
Lipopolysaccharide and beta-1, 3-glucan binding protein (LGBP) is a kind of pattern recognition receptor, which can recognize and bind LPS and beta-1, 3-glucan, and plays curial roles in the innate immune defense against Gram-negative bacteria and fungi. In this study, the functions of LGBP from Zhikong scallop Chlamys farreri performed in innate immunity were analyzed. Firstly, the mRNA expression of CfLGBP in hemocytes toward three typical PAMPS stimulation was examined by realtime PCR. It was up-regulated extremely (P < 0.01) post stimulation of LPS and beta-glucan, and also exhibited a moderate up-regulation (P < 0.01) after PGN injection. Further PAMPs binding assay with the polyclonal antibody specific for CfLGBP proved that the recombinant CfLGBP (designated as rCfLGBP) could bind not only LPS and beta-glucan, but also PGN in vitro. More importantly, rCfLGBP exhibited obvious agglutination activity towards Gram-negative bacteria Escherichia coil, Gram-positive bacteria Bacillus subtilis and fungi Pichia pastoris. Taking the results of immunofluorescence assay into account, which displayed CfLGBP was expressed specifically in the immune cells (hemocytes) and vulnerable organ (gill and mantle), we believed that LGBP in C farreri, serving as a multi-functional PRR, not only involved in the immune response against Gram-negative and fungi as LGBP in other invertebrates, but also played significant role in the event of anti-Gram-positive bacteria infection. As the first functional research of LGBP in mollusks, our study provided new implication into the innate immune defense mechanisms of C. farreri and mollusks. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
C-type lectins are a superfamily of carbohydrate-recognition proteins which play crucial roles as pattern recognition receptors (PRRs) in the innate immunity. In this study, the full-length cDNA of a C-type lectin was cloned from scallop Chlamys farreri (designated as Cflec-5) by expression sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approach The full-length cDNA of Cflec-5 was of 1412 bp. The open reading frame encoded a polypeptide of 153 amino acids, including a signal sequence and a conserved carbohydrate-recognition domain with the EPN motif determining the mannose-binding specificity The deduced amino acid sequence of Cflec-5 showed high similarity to members of C-type lectin superfamily. The quantitative real-time PCR was performed to investigate the tissue distribution of Cflec-5 mRNA and its temporal expression profiles in hemocytes post pathogen-associated molecular patterns (PAMPs) stimulation. In healthy scallops, the Cflec-5 mRNA was mainly detected in gill and mantle, and marginally in other tissues The mRNA expression of Cflec-5 could be significantly induced by lipopolysaccharide (LPS) and glucan stimulation and reached the maximum level at 6 h and 12 h, respectively But its expression level did not change significantly during peptidoglycan (PGN) stimulation The function of Cflec-5 was investigated by recombination and expression of the cDNA fragment encoding its mature peptide in Escherichia coli Rosetta Gami (DE3) The recombinant Cflec-5 agglutinated Pichia pastoris in a calcium-independent way The agglutinating activity could be inhibited by D-mannose. LPS and glucan, but not by D-galactose or PGN. These results collectively suggested that Cflec-5 was involved in the innate Immune response of scallops and might contribute to nonself-recognition through its interaction with various PAMPs (C) 2010 Elsevier Ltd All rights reserved
Resumo:
An ordered gray-scale erosion is suggested according to the definition of hit-miss transform. Instead of using three operations, two images, and two structuring elements, the developed operation requires only one operation and one structuring element, but with three gray-scale levels. Therefore, a union of the ordered gray-scale erosions with different structuring elements can constitute a simple image algebra to program any combined image processing function. An optical parallel ordered gray-scale erosion processor is developed based on the incoherent correlation in a single channel. Experimental results are also given for an edge detection and a pattern recognition. (C) 1998 Society of Photo-Optical Instrumentation Engineers. [S0091-3286(98)00306-7].
Resumo:
Ultrafast temporal pattern generation and recognition with femtosecond laser technology is presented, analyzed, and experimentally implemented. Ultrafast temporal pattern generation and recognition are realized by taking advantage of two well-known techniques: the space-time conversion technique and the ultrafast pulse measurement technique. Here the temporal pattern for the designed multiple pulses, optimized with a preassumed Gaussian spectral distribution of an ultrashort pulse, is described. With the simulation of a Gaussian spectral distribution, we realize that the uniformity of the generated multiple ultrafast temporal pulses is relevant to the repeated number of modulation periods in the mask in the spectral plane. Moreover, the change of Gaussian spectral phases with the wavelengths in the modulated phase plate is considered. Experiments of ultrafast temporal pattern recognition by the frequency-resolved optical gating (FROG) characterization technique are also given. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The stress release model, a stochastic version of the elastic rebound theory, is applied to the large events from four synthetic earthquake catalogs generated by models with various levels of disorder in distribution of fault zone strength (Ben-Zion, 1996) They include models with uniform properties (U), a Parkfield-type asperity (A), fractal brittle properties (F), and multi-size-scale heterogeneities (M). The results show that the degree of regularity or predictability in the assumed fault properties, based on both the Akaike information criterion and simulations, follows the order U, F, A, and M, which is in good agreement with that obtained by pattern recognition techniques applied to the full set of synthetic data. Data simulated from the best fitting stress release models reproduce, both visually and in distributional terms, the main features of the original catalogs. The differences in character and the quality of prediction between the four cases are shown to be dependent on two main aspects: the parameter controlling the sensitivity to departures from the mean stress level and the frequency-magnitude distribution, which differs substantially between the four cases. In particular, it is shown that the predictability of the data is strongly affected by the form of frequency-magnitude distribution, being greatly reduced if a pure Gutenburg-Richter form is assumed to hold out to high magnitudes.
Resumo:
High dimensional biomimetic informatics (HDBI) is a novel theory of informatics developed in recent years. Its primary object of research is points in high dimensional Euclidean space, and its exploratory and resolving procedures are based on simple geometric computations. However, the mathematical descriptions and computing of geometric objects are inconvenient because of the characters of geometry. With the increase of the dimension and the multiformity of geometric objects, these descriptions are more complicated and prolix especially in high dimensional space. In this paper, we give some definitions and mathematical symbols, and discuss some symbolic computing methods in high dimensional space systematically from the viewpoint of HDBI. With these methods, some multi-variables problems in high dimensional space can be solved easily. Three detailed algorithms are presented as examples to show the efficiency of our symbolic computing methods: the algorithm for judging the center of a circle given three points on this circle, the algorithm for judging whether two points are on the same side of a hyperplane, and the algorithm for judging whether a point is in a simplex constructed by points in high dimensional space. Two experiments in blurred image restoration and uneven lighting image correction are presented for all these algorithms to show their good behaviors.
Resumo:
On the basis of DBF nets proposed by Wang Shoujue, the model and properties of DBF neural network were discussed in this paper. When applied in pattern recognition, the algorithm and implement on hardware were presented respectively. We did experiments on recognition of omnidirectionally oriented rigid objects on the same level, using direction basis function neural networks, which acts by the method of covering the high dimensional geometrical distribution of the sample set in the feature space. Many animal and vehicle models (even with rather similar shapes) were recognized omnidirectionally thousands of times. For total 8800 tests, the correct recognition rate is 98.75%, the error rate and the rejection rate are 0.5% and 1.25% respectively. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
In this paper, a novel mathematical model of neuron-Double Synaptic Weight Neuron (DSWN)(l) is presented. The DSWN can simulate many kinds of neuron architectures, including Radial-Basis-Function (RBF), Hyper Sausage and Hyper Ellipsoid models, etc. Moreover, this new model has been implemented in the new CASSANN-II neurocomputer that can be used to form various types of neural networks with multiple mathematical models of neurons. The flexibility of the DSWN has also been described in constructing neural networks. Based on the theory of Biomimetic Pattern Recognition (BPR) and high-dimensional space covering, a recognition system of omni directionally oriented rigid objects on the horizontal surface and a face recognition system had been implemented on CASSANN-II neurocomputer. In these two special cases, the result showed DSWN neural network had great potential in pattern recognition.
Resumo:
An optical communication scheme of 2-D pattern transfer based on imaging optics for submarine laser uplink communication (SLUC) is suggested. Unlike the methods aiming at avoiding neighboring crosstalk used in traditional multi-channel optical beam transferring, we make full use of the overlapping of each spreading beam other than controlling divergence effect of each beam to avoid interference noise. The apparent parameters have been introduced to simplify theoretical analysis of optical pattern transfer problem involving underwater condition, with the help of which the complex beam propagation inside two kinds of mediums can be easily reduced to brief beam transfer only inside air medium. In this paper, optical transmission path and receiver terminal optics geometry have been described in detail. The link range equation and system uplink performance analysis have also been given. At last, results of a proof-of-concept experiment indicate good feasibility of the proposed SLUC model. © 2007 Elsevier GmbH. All rights reserved.
Resumo:
Peptidoglycan recognition protein (PGRP) specifically binds to peptidoglycan and is considered to be one of the pattern recognition proteins in the innate immunity of insect and mammals. Using a database mining approach and RT-PCR, multiple peptidoglycan recognition protein (PGRP) like genes have been discovered in fish including zebrafish Danio rerio, Japanese pufferfish TakiFugu rubripes and spotted green pufferfish Tetraodon nigroviridis. They share the common features of those PGRPs in arthropod and mammals, by containing a conserved PGRP domain. Based on the predicted structures, the identified zebrafish PGRP homologs resemble short and long PGRP members in arthropod and mammals. The identified PGRP genes in T. nigroviridis and TakiFugu rubripes resemble the long PGRPs, and the short PGRP genes have not been found in T. nigroviridis and TakiFugu rubripes databases. Computer modelling of these molecules revealed the presence of three alpha-helices and five or six beta-strands in all fish PGRPs reported in the present study. The long PGRP in teleost fish have multiple alternatively spliced forms, and some of the identified spliced variants, e.g., tnPGRP-L3 and tnPGRP-L4 (in: Tetraodon nigroviridis), exhibited no characters present in the PGRP homologs domain. The coding regions of zfPGRP6 (zf: zebrafish), zfPGRP2-A, zfPGRP2-B and zfPGRP-L contain five exons and four introns; however, the other PGRP-like genes including zfPGRPSC1a, zfPGRPSC2, tnPGRP-L1-, tnPGRP-L2 and frPGRP-L (fr: Takifugu rubripes) contain four exons and three introns. In zebrafish, long and short PGRP genes identified are located in different chromosomes, and an unknown locus containing another long PGRP-like gene has also been found in zebrafish, demonstrating that multiple PGRP loci may be present in fish. In zebrafish, the constitutive expressions of zfPGRP-L, zfPGRP-6 and zfPGRP-SC during ontogeny from unfertilized eggs to larvae, in different organs of adult, and the inductive expression following stimulation by Flavobacterium columnare, were detected by real-time PCR, but the levels and patterns varied for different PGRP genes, implying that different short and long PGRPs may play different roles in innate immune response. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The accurate cancer classification is of great importance in clinical treatment. Recently, the DNA microarray technology provides a promising approach to the diagnosis and prognosis of cancer types. However, it has no perfect method for the multiclass classification problem. The difficulty lies in the fact that the data are of high dimensionality with small sample size. This paper proposed an automatic classification method of multiclass cancers based on Biomimetic pattern recognition (BPR). To the public GCM data set, the average correct classification rate reaches 80% under the condition that the correct rejection rate is 81%.
Resumo:
In this paper, we constructed a Iris recognition algorithm based on point covering of high-dimensional space and Multi-weighted neuron of point covering of high-dimensional space, and proposed a new method for iris recognition based on point covering theory of high-dimensional space. In this method, irises are trained as "cognition" one class by one class, and it doesn't influence the original recognition knowledge for samples of the new added class. The results of experiments show the rejection rate is 98.9%, the correct cognition rate and the error rate are 95.71% and 3.5% respectively. The experimental results demonstrate that the rejection rate of test samples excluded in the training samples class is very high. It proves the proposed method for iris recognition is effective.