168 resultados para Optical film
Resumo:
Three distyrylbenzene (DSB) derivatives were vacuum-evaporated on a (001) surface of KBr. DSB derivative molecules formed nuclei by interaction between the electron donative methoxyl group and Br- ion of the substrate crystal and oriented their longitudinal axis obliquely to the substrate surface. The peak shift between the emission peaks of solution and film decreased depending on the number of substituent. This phenomenon was originated to reduction of molecular interaction between neighboring molecules by steric hindrance of end substituents. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The spontaneous emission properties of a single layer organic film in plane optical microcavities were studied. Optical microcavity was formed by a Tris(8-quinolinolato) aluminium (Alq) film sandwiched between a distributed Bragg reflector (DBR) and a Ag metallic reflector. Two kinds of microcavities were devised by using a different DBR structure. Compared with a Alq film, significantly spectral narrowing and intensity enhancement was observed in the two microcavities, which is attributed to the microcavity effect. The spectra characteristics of the two microcavities showed that the structure of DBR has much influence on the emission properties of a microcavity. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Binary and ternary europium complexes with dibenzplymethane (DBM) and 1,10-phenanthroline (phen) were synthesized and doped into a sol-gel luminescence thin film and polyvinylbutyral (PVB) film. The luminescent spectra and lifetime of the films were measured. The final results showed that Eu(III) characteristic emission bands were observed in the spectra of all the doped films. Longer lifetimes and a higher photo-stability were observed in SiO2:Eu(III) complex luminescent thin films than in PVB:Eu(III) complex films that contained a corresponding amount of pure complexes. Heat-stability tests showed that SiO2:Eu(III) complex thin films still showed certain fluorescence after heat-treatment at a temperature of 130 degreesC, while little fluorescence could be observed in PVB:Eu(III) complex films under a UV lamp. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, a nano-moiré fringe multiplication method is proposed, which can be used to measure nano-deformation of single crystal materials. The lattice structure of Si (111) is recorded on a film at a given magnification under a transmission microscope, which acts as a specimen grating. A parallel grating (binary type) on glass or film is selected as a reference grating. A multiplied nano-moiré fringe pattern can be reproduced in a 4f optical filter system with the specimen grating and the prepared reference grating. The successful results illustrate that this method can be used to measure deformation in nanometre scale. The method is especially useful in the measurement of the inhomogeneous displacement field, and can be utilized to characterize nano-mechanical behaviour of materials such as dislocation and atomic bond failure.
Resumo:
The refractive index and thickness of SiO2 thin films naturally grown on Si substrates were determined simultaneously within the wavelength range of 220-1100 nm with variable-angle spectroscopic ellipsometry. Different angles of incidence and wavelength ranges were chosen to enhance the analysis sensitivity for more accurate results. Several optical models describing the practical SiO2-Si system were investigated, and best results were obtained with the optical model, including an interface layer between SiO2 and Si, which proved the existence of the interface layer in this work as described in other publications.
Resumo:
The InAsxSb1-x films were grown on (100) GaSb substrates by liquid-phase epitaxy, and their structural, electrical, and optical properties were investigated. The high-resolution x-ray diffraction results reveal that the single crystalline InAsxSb1-x films with a midrange composition are epitaxially grown on the GaSb substrates. Temperature dependence of the Hall mobility was theoretically modeled by considering several predominant scattering mechanisms. The results indicate that ionized impurity and dislocation scatterings dominate at low temperatures, while polar optical phonon scattering is important at room temperature (RT). Furthermore, the InAsxSb1-x films with the higher As composition exhibit the better crystalline quality and the higher mobility. The InAs0.35Sb0.65 film exhibits a Hall mobility of 4.62x10(4) cm(2) V-1 s(-1). The cutoff wavelength of photoresponse is extended to about 12 mu m with a maximum responsivity of 0.21 V/W at RT, showing great potential for RT long-wavelength infrared detection. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2989116]
Resumo:
A scheme for the readout of a hologram recorded in bacteriorhodopsin film with high diffraction efficiency and intensity is suggested and demonstrated. Two weak coherent continuous beams function as the recording beams, and a strong light pulse is used to read the real-time hologram. The width of the readout light pulse is modulated to be short compared with the erase time of the reading beam; the time space between two adjacent pulses is ensured to be longer than the time the beams take to recover the hologram, and high diffraction efficiency and intensity (similar to 11 mW/cm(2)) can be obtained. (C) 1996 Optical Society of America.
Resumo:
We found reversible dark-center diffraction of the transmitted probe beam passing through the chromium film. which is induced by the pump femtosecond laser. The dark-center diffraction of I he transmitted probe beam appears and disappears with and without the pump beam. A view of diffractive optics with binary phase plate is put forward, which explains the reversible dark-center diffractive optical phenomenon. The pre-ablated hole on the metal film can be regarded as a uniform light filed without phase modulation, the Surrounding Circular part around the pre-ablated hole can be regarded as "phase modulated". Therefore, this diffraction optic view might be helpful for us to understand the phase change of the metal film introduced by the femtosecond laser pulse. (C) 2008 Elsevier B.V, All rights reserved.
Resumo:
We present a nondestructive technique to predict the refractive index profiles of isotropic planar waveguides, on which a thin gold film is deposited to as the cladding. The negative dielectric constant of the metal results in significant differences of effective indices between TE and TM modes. The two polarized modes and a surface plasmon resonance (SPR) with abundant information of the surface index can be used to construct the refractive index profiles of single-mode and two-mode waveguides at a fixed wavelength. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The time response of optical switching properties of Sb thin films under focused laser pulses is investigated. The results show that the response course can be divided into onset, opening, and closing stages. Formulas for their lengths are given. The onset and opening times decrease with increasing pumping light power density. The closing time is about 150 ns. For optical memory, if the power density of the readout and recording lasers changes from 5 x 10(9) to 15 x 10(9) W/m(2), the onset time changes from 2.5 to 0.30 mus, and the opening time is on the nanosecond scale. (C) 2003 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The refractive indices of crystalline phase-change films are usually obtained by thermal-induced crystallization. However, this is not accurate, because the crystallization of phase-change film in rewritable optical disks is laser induced. In this study, we use the initializer to crystallize the phase-change films. The dependence of the refractive index n and the extinction coefficient k of the phase-change films on the initialization conditions are studied. Remarkable changes of the refractive indices (especially k) are found when the initialization laser power density is 6.63 mW/mum(2) and the initialization velocity is 4.0 m/s. At the same time, the structure changes of the phase-change films are also studied. This dependence is explained by the structure change of the films. These results are significant in improving the accuracy of optical design and the thermal simulation of phase-change optical disks, as well as in the study of phase-change optical disks at shorter wavelengths. (C) 2003 Society of Photo-Optical Instrumentation Engineers.
Resumo:
SrBi2Ta2O9 (SBT) thin films on quartz substrates were prepared by use of the pulsed-laser deposition technique. The nonlinear refractive indices, n(2), Of the SBT films were measured by use of z-scan techniques with picosecond pulses. Large negative nonlinear refractive indices of 3.84 and 3.58 cm(2)/GW were obtained for the wavelengths 532 nm and 1.064 mum, respectively. The two-photon absorption coefficient was determined to be 7.3 cm/GW for 532 nm. The limiting behavior of SBT thin film on a quartz substrate was investigated in an f/5 defocusing geometry by use of 38-ps-duration, 532-nm, 1.064-mum. laser excitation. (C) 2001 Optical Society of America.
Resumo:
A new composition content quaternary-alloy-based phase change thin film, Sb-rich AgInSbTe, has been prepared by DC-magnetron sputtering on a K9 glass substrate. After the film has been subsequently annealed at 200degreesC for 30 min, it becomes a crystalline thin film. The diffraction peak of antimony (Sb) are observed by shallow (0.5 degree) x-ray diffraction in the quaternary alloy thin film. The analyses of the measurement from differential scanning calorimetry (DSC) show that the crystallization temperature of the phase change thin film is about 190degreesC and increases with the heating rate. By Kissinger plot, the activation energy for crystallization is determined to be 3.05eV. The reflectivity, refractive index and extinction coefficient of the crystalline and amorphous phase change thin films are presented. The optical absorption coefficient of the phase change thin films as a function of photon energy is obtained from the extinction coefficient. The optical band gaps of the amorphous and crystallization phase change thin films are 0.265eV and 1.127eV, respectively.
Resumo:
A novel metallized azo dye has been synthesized. The absorption spectra of the thin film and thermal characteristic are measured. Static optical recording properties with and without the Bi mask layer super-resolution near-field structure (Super-RENS) of the metal-azo dye are investigated. The results show that the metal-azo dye film has a broad absorbance band in the region of 450-650 nm and the maximum absorbance wavelength is located at 603 nm. It is also found that the new metallized azo dye occupies excellent thermal stability, initiatory decomposition temperature is at 270 degrees C and the mass loss is about 48% in a narrow temperature region (15 degrees C). The complex refractive index N (N = n + ik) is measured. High refractive index (n = 2.45) and low extinction coefficient (k = 0.2) at the recording wavelength 650nm are attained. Static optical recording tests with and without Super-RENS are carried out using a 650nm semiconductor diode laser with recording power of 7mW and laser pulse duration of 200ns. The AFM images show that the diameter of recording mark on the dye film with the Bi mask layer is reduced about 42%, compared to that of recorded mark on the dye film without Super-RENS. It is indicated that Bi can well performed as a mask layer of the dye recording layer and the metallized azo dye can be a promising candidate for recording media with the super-resolution near-field structure.
Resumo:
We quantitatively analysed the factors contributing to the optical transmission enhancement of a sub-wavelength Sb thin film lens, using the finite-difference time-domain (FDTD) method. The results show that the transmission enhancement of the dielectric with a Gaussian distributed refractive index loaded in a sub-wavelength circular hole is not only due to the high refractive index dielectric, but also due to the specific distributions of refractive index. It is the first study about the effects of the refractive index distribution on the transmission of a sub-wavelength aperture. This kind of lens has practical applications in the very small aperture lasers and for near-field optical storage and lithography.