290 resultados para Nonlinear optical properties
Resumo:
From the chemical bond viewpoint, the second-order nonlinear optical (NLO) tensor coefficients of some Re-2(MoO4)(3) (ReMO)-type tare earth molybdates, with Re = Pr, Nd, Sm, Eu, Gd, Tb and Dy, have been calculated by using the chemical bond theory of complex crystals and the modified bond charge model. All kinds of constituent chemical bonds are considered in the calculation. The major part of the NLO properties of these ReMO crystals is found from the ReO7 groups. The NLO coefficients of these ReMO crystals decrease with Re from Pr to Dy. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The second-order nonlinear optical (NLO) tenser coefficients of LiXO3 (X = I; Nb or Ta) type complex crystals have been calculated using the chemical bond theory of complex crystals. Contributions of each type of bond to the total second-order NLO coefficient d(ij) and the linear susceptibility X are quantitatively determined. All tensor values thus calculated are in good agreement with experimental data. The Li-O bonds are found to be an important group in the contributions to the total NLO tenser coefficient, especially for those in LiNbO3 and LiTaO3. The importance of Li-O bonds depends on the environment of Li atom in these crystals.
Resumo:
Regular ZnO tetrapods with different morphologies have been obtained on Si(100) substrate via the chemical vapour deposition approach. Varying the growth temperature and gas rate, we have obtained different structured ZnO materials: tetrapods with a large hexagonal crown, a flat top and a small hexagonal crown. The results suggest that these tetrapods are all single crystals with a wurtzite structure that grow along the (0001) direction. However, photoluminescence spectra shows that their optical properties are quite different: for those with large hexagonal crown, the green emission overwhelms that of the near band-edge (NBE) ultraviolet (UV) peak, while others have only a strong NBE UV peak at ~386 nm.
Resumo:
The deposition of CdO center dot nH(2)O On CdTe nanoparticles was studied in an aqueous phase. The CdTe nanocrystals (NCs) were prepared in aqueous solution through the reaction between Cd2+ and NaHTe in the presence of thioglycolic acid as a stabilizer. The molar ratio of the Cd2+ to Te2- in the precursory solution played an important role in the photoluminescence of the ultimate CdTe NCs. The strongest photoluminescence was obtained under 4.0 of [Cd2+]/[Te2-] at pH similar to 8.2. With the optimum dosage of Cd(II) hydrous oxide deposited on the CdTe NCs, the photoluminescence was enhanced greatly. The photoluminescence of these nanocomposites was kept constant in the pH range of 8.0-10.0, but dramatically decreased with an obvious blue-shifted peak while the pH was below 8.0. In addition, the photochemical oxidation of CdTe NCs with cadmium hydrous oxide deposition was markedly inhibited.
Resumo:
The InAsxSb1-x films were grown on (100) GaSb substrates by liquid-phase epitaxy, and their structural, electrical, and optical properties were investigated. The high-resolution x-ray diffraction results reveal that the single crystalline InAsxSb1-x films with a midrange composition are epitaxially grown on the GaSb substrates. Temperature dependence of the Hall mobility was theoretically modeled by considering several predominant scattering mechanisms. The results indicate that ionized impurity and dislocation scatterings dominate at low temperatures, while polar optical phonon scattering is important at room temperature (RT). Furthermore, the InAsxSb1-x films with the higher As composition exhibit the better crystalline quality and the higher mobility. The InAs0.35Sb0.65 film exhibits a Hall mobility of 4.62x10(4) cm(2) V-1 s(-1). The cutoff wavelength of photoresponse is extended to about 12 mu m with a maximum responsivity of 0.21 V/W at RT, showing great potential for RT long-wavelength infrared detection. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2989116]
Resumo:
The deposition of CdO center dot nH(2)O On CdTe nanoparticles was studied in an aqueous phase. The CdTe nanocrystals (NCs) were prepared in aqueous solution through the reaction between Cd2+ and NaHTe in the presence of thioglycolic acid as a stabilizer. The molar ratio of the Cd2+ to Te2- in the precursory solution played an important role in the photoluminescence of the ultimate CdTe NCs. The strongest photoluminescence was obtained under 4.0 of [Cd2+]/[Te2-] at pH similar to 8.2. With the optimum dosage of Cd(II) hydrous oxide deposited on the CdTe NCs, the photoluminescence was enhanced greatly. The photoluminescence of these nanocomposites was kept constant in the pH range of 8.0-10.0, but dramatically decreased with an obvious blue-shifted peak while the pH was below 8.0. In addition, the photochemical oxidation of CdTe NCs with cadmium hydrous oxide deposition was markedly inhibited.
Resumo:
Broadband near-infrared (IR) luminescence in transparent alkali gallium silicate glass-ceramics containing N2+-doped beta-Ga2O3 nanocrystals was observed. This broadband emission could be attributed to the T-3(2g) (F-3) -> (3)A(2g) (F-3) transition of octahedral Ni2+ ions in glass-ceramics. The full width at half-maximum (FWHM) of the near-IR luminescence and fluorescent lifetime of the glass-ceramic doped with 0.10 mol% NiO were 260 nm and similar to 1220 mu s, respectively. It is expected that transparent Ni2+-doped beta-Ga2O3 glass-ceramics with this broad near-IR emission and long fluorescent lifetime have potential applications as super-broadband optical amplification media.
Resumo:
Optical properties of a two-dimensional square-lattice photonic crystal are systematically investigated within the partial bandgap through anisotropic characteristics analysis and numerical simulation of field pattern. Using the plane-wave expansion method and Hellmann-Feynman theorem, the relationships between the incident and refracted angles for both phase and group velocities are calculated to analyze light propagation from air to photonic crystals. Three kinds of flat slab focusing are summarized and demonstrated by numerical simulations using the multiple scattering method. (c) 2007 Optical Society of America
Resumo:
A new composition content quaternary-alloy-based phase change thin film, Sb-rich AgInSbTe, has been prepared by DC-magnetron sputtering on a K9 glass substrate. After the film has been subsequently annealed at 200degreesC for 30 min, it becomes a crystalline thin film. The diffraction peak of antimony (Sb) are observed by shallow (0.5 degree) x-ray diffraction in the quaternary alloy thin film. The analyses of the measurement from differential scanning calorimetry (DSC) show that the crystallization temperature of the phase change thin film is about 190degreesC and increases with the heating rate. By Kissinger plot, the activation energy for crystallization is determined to be 3.05eV. The reflectivity, refractive index and extinction coefficient of the crystalline and amorphous phase change thin films are presented. The optical absorption coefficient of the phase change thin films as a function of photon energy is obtained from the extinction coefficient. The optical band gaps of the amorphous and crystallization phase change thin films are 0.265eV and 1.127eV, respectively.
Resumo:
The NiOx thin films were deposited by reactive dc-magnetron sputtering from a nickel metal target in Ar + O-2 with the relative O-2 content 5%. The as-deposited NiOx, thin films could represent a two-component system comprising crystalline NiO particles dispersed in an amorphous Ni2O3. Decomposition temperature of the as-deposited NiO, thin films was at about 263 degrees C. After annealed at 400 degrees C for 30 min in air, the surface morphology of the films became very rough due to the decomposition of the Ni2O3, leading to the changes of the optical properties of the NiO, thin films. The reflectivity of the films annealed at 400 degrees C was lower than that of the as-deposited one and the optical contrast was 52% at 405 nm. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The non-resonant third-order non-linear optical properties of amorphous Ge20As25Se55 films were studied experimentally by the method of the femtosecond optical heterodyne detection of optical Kerr effect. The real and imaginary parts of complex third-order optical non-linearity could be effectively separated and their values and signs could be also determined, which were 6.6 x 10(-12) and -2.4 x 10(-12) esu, respectively. Amorphous Ge20As25Se55 films showed a very fast response in the range of 200 fs under ultrafast excitation. The ultrafast response and large third-order non-linearity are attributed to the ultrafast distortion of the electron orbitals surrounding the average positions of the nucleus of Ge, As and Se atoms. The high third-order susceptibility and a fast response time of amorphous Ge20As25Se55 films makes it a promising material for application in advanced techniques especially in optical switching. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The real and imaginary parts of third-order susceptibility of amorphous GeSe2 film were measured by the method of the femtosecond optical heterodyne detection of optical Kerr effect at 805 nm with the 80 fs ultra fast pulses. The results indicated that the values of real and imaginary parts were 8.8 x 10(-12) esu and -3.0 x 10(-12) esu, respectively. An amorphous GeSe2 film also showed a very fast response within 200 fs. The ultra fast response and large third-order non-linearity are attributed to the ultra fast distortion of the electron orbits surrounding the average positions of the nucleus of Ge and Se atoms. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
NiOx thin films were deposited by reactive DC-magnetron sputtering from a nickel metal target in Ar + O-2 with the relative O-2 content of 5%. Thermal annealing effects on optical properties and surface morphology of NiOx, films were investigated by X-ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscope and optical measurement. The results showed that the changes in optical properties and surface morphology depended on the temperature. The surface morphology of the films changed obviously as the annealing temperature increased due to the reaction NiOx -> NiO + O-2 releasing O-2. The surface morphology change was responsible for the variation of the optical properties of the films. The optical contrast between the as-deposited films and 400 degrees C annealed films was about 52%. In addition, the relationship of the optical energy band gap with the variation of annealing temperature was studied. (c) 2006 Elsevier B.V. All rights reserved.