162 resultados para Nanotubes de carbone mono-parois
Resumo:
Density gradient ultracentrifugation (DGU) has emerged as a promising tool to prepare chirality enriched nanotube samples. Here, we assess the performance of different surfactants for DGU. Bile salts (e.g., sodium cholate (SC), sodium deoxycholate (SDC), and sodium taurodeoxycholate (TDC)) are more effective in individualizing Single Wall Carbon Nanotubes (SWNTs) compared to linear chain surfactants (e.g., sodium dodecylbenzene sulfonate (SDBS) and sodium dodecylsulfate (SDS)) and better suited for DGU. Using SC, a narrower diameter distribution (0.69-0.81 nm) is achieved through a single DGU step on CoMoCAT tubes, when compared to SDC and TDC (0.69-0.89 nm). No selectivity is obtained using SDBS. due to its ineffectiveness in debundling. We assign the reduce selectivity of dihydroxy bile salts (S DC and TDC) in comparison with trihydroxy SC to the formation of secondary micelles. This is determined by the number and position of hydroxyl ( OH) groups on the a-side of the steroid backbone. We also enrich CoMoCAT SWNT in the 0.84-0.92 nm range using the Pluronic F98 triblock copolymer. Mixtures of bile salts (SC) and linear chain surfactants (SOS) are used to enrich metallic and semiconducting laser-ablation grown SWNTs. We demonstrate enrichment of a single chirality, (6,5), combining diameter and metallic versus semiconductillg separation on CoMoCAT samples.
Resumo:
The resonant Raman behavior of the radial breathing modes are very useful to analyze the electronic property of carbon nanotubes. We investigated the resonant behaviors of Stokes and anti-Stokes radial breathing mode and its overtone of a metallic nanotube, and show how to accurately determine the electronic transition energy of carbon nanotubes from radial breathing modes and their overtones. Based on the present results, the previously reported resonant Raman behavior of the radial breathing modes of SWINT bundles can be interpreted very well.
Resumo:
We observed yellow colored light emission bands from multiwalled carbon nanotubes in photo-luminescence (PL) experiments. The light emission band features indicate that the PL bands are associated with the electronic properties inherent to the carbon nanotube (CNT) structures.
Resumo:
The different resonant Raman scattering process of single-walled carbon nanotubes (SWNTs) has been found between the Stokes and anti-Stokes sides of the radial breathing modes (RBMs), and this provides strong evidence that Raman spectra of some special diametric SWNTs are in resonance with their electronic transitions between the singularities in the one-dimensional electronic density of states in the valence and conduction bands, and other SWNTs axe beyond the resonant condition. Because of the coexistence of resonant and non-resonant Raman scattering processes for different diametric SWNTs, the relative intensity of each RBM does not reflect the proportion of a particular SWNT.
Resumo:
IEECAS SKLLQG