153 resultados para Micro-éveil
Resumo:
Micro anchor is a kind of typical structures in micro/nano electromechanical systems (MEMS/NEMS), and it can be made by anodic bonding process, with thin films of metal or alloy as an intermediate layer. At the relative low temperature and voltage, specimens with actually sized micro anchor structures were anodically bonded using Pyrex 7740 glass and patterned crystalline silicon chips coated with aluminum thin film with a thickness comprised between 50 nm and 230 nm. To evaluate the bonding quality, tensile pulling tests have been finished with newly designed flexible fixtures for these specimens. The experimental results exhibit that the bonding tensile strength increases with the bonding temperature and voltage, but it decreases with the increase of the thickness of Al intermediate layer. This kind of thickness effect of the intermediate layer was not mentioned in the literature on anodic bonding. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The existing three widely used pull-in theoretical models (i.e., one-dimensional lumped model, linear supposition model and planar model) are compared with the nonlinear beam mode in this paper by considering both cantilever and fixed-fixed type micro and nano-switches. It is found that the error of the pull-in parameters between one-dimensional lumped model and the nonlinear beam model is large because the denominator of the electrostatic force is minimal when the electrostatic force is computed at the maximum deflection along the beam. Since both the linear superposition model and the slender planar model consider the variation of electrostatic force with the beam's deflection, these two models not only are of the same type but also own little error of the pull-in parameters with the nonlinear beam model, the error brought by these two models attributes to that the boundary conditions are not completely satisfied when computing the numerical integration of the deflection.
Resumo:
The influence of the indenter shapes and various parameters on the magnitude of the capillary force is studied on the basis of models describing the wet adhesion of indenters and substrates joined by liquid bridges. In the former, we consider several shapes, such as conical, spherical and truncated conical one with a spherical end. In the latter, the effects of the contact angle, the radius of the wetting circle, the volume of the liquid bridge, the environmental humidity, the gap between the indenter and the substrate, the conical angle, the radius of the spherical indenter, the opening angle of the spherical end in the truncated conical indenter are included. The meniscus of the bridge is described using a circular approximation, which is reasonable under some conditions. Different dependences of the capillary force on the indenter shapes and the geometric parameters are observed. The results can be applicable to the micro- and nano-indentation experiments. It shows that the measured hardness is underestimated due to the effect of the capillary force. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper studies the surface melting in the atmosphere by YAG laser-guided micro-arc discharge. In three kinds of surface conditions (free, oiled, and polyethylene covered), we try to control the diameter and the power density of discharge pit. It is found that the power density of 3 x 10(6) W/cm(2) of discharge pit on the oiled surface is moderate to form the melted layer thicker than that of the others, adapting to strengthen the surface of material, and the power density of 1.07 x 10(7) W/cm(2) of discharge pit on the polyethylene-covered surface is highest to form the deepest discharge pit among them, adapting to remove the material.
Resumo:
A moving-coil designed micro-mechanics tester, named as MicroUTM (universal testing machine), is in-house developed in this paper for micro-mechanics tests. The main component is a moving coil suspended in a uniform magnetic field through a set of springs. When a current passes through the coil, the electromagnetic force is proportional to the magnitude of the current, so the load can easily be measured by the current. The displacement is measured using a capacitive sensor. The load is calibrated using a Sartorius BP211D analytical balance, with a resolution/range of 0.01 mg/80 g or 0.1 mg/210 g. The displacement is calibrated using a HEIDENHAIN CT-6002 length gauge with an accuracy of +/- 0.1 mu m. The calibration results show that the load range is +/- 1 N and the displacement range is +/- 300 mu m. The noise levels of the load and displacement are 50 mu N and 150 nm, respectively. The nonlinearity of the load is only 0.2%. Several in-plane load tests of the MEMS micro-cantilever are performed using this tester. Experimental results, with excellent repeatability, demonstrate the reliability of the load measurement as well as the flexible function of this tester.
Resumo:
Post-microbuckling is a fundamental feature of compressive failure process for the unidirectional-fiber-reinforced composites and laminated composites. The post-microbuckling behavior of composites under compression in the light of the Kevlar49-reinforced 648/BF3.400 (brittle epoxy) and EP (flexible epoxy) is studied, theoretically and experimentally. Analytical results of compressive strength are in good agreement with experimental results, qualitatively and quantitatively. By the experimental research, the post-microbuckling feature of the advancing kink band model is clearly displayed.
Resumo:
The ideal micro-cracks are treated with the number-density function; the characteristics of their evolution are investigated; a deterministic model is applied to the discussion of their extension. It is discovered that under certain conditions saturation may occur in the number-density. The main features of the statistical formulation are illustrated by several examples and compared with those observed in experiments.
Resumo:
Composite coatings were obtained on A3 steel by hot dipping aluminum(HAD) at 720 degreesC for 6 min and micro-plasma oxidation (MPO) in alkali electrolyte. The surface morphology, element distribution and interface structure of composite coatings were studied by means of XRD, SEM and EDS. The results show that the composite coatings obtained through HAD/MPO on A3 steel consist of four layers. From the surface to the substrate, the layer is loose Al2O3 ceramic, compact Al2O3 ceramic, At and FeAl intermetallic compound layer in turn. The adhesions among all the layers are strengthened because the ceramic layer formed at the At surface originally, FeAl intermetallic compound layer and substrate are combined in metallurgical form through mutual diffusion during HAD process. Initial experiment results disclose that the anti-corrosion performance and wear resistance of composite coating are obviously improved through HAD/MPO treatment.
Resumo:
Because of the load transfer effect of interface layer, the stress distribution inside the composite structure of film/substrate can be very different from the Timoshenko's model. In this paper, we give the derivation and analysis of such load transfer effect of shear-lag (S-L) model. The micro-structure size (boundary conditions) effect together with interface load transfer effect becomes more and more important as the microstructure size including the three dimensions of thickness, width and length shrinks. The microstructure size is also responsible for the so-called edge-induced stress. The edge effect and difference of S-L model and Timoshenko model are also demonstrated.
Resumo:
The spray of emulsified fuel, composed of diesel fuel, water and methanol can make micro-explosion under high temperature conditions, and the viscosity and the atomization characteristics of emulsion have significant effects on the micro- explosion of emulsions. To clarify the combustion mechanism of water-in-oil emulsion sprays, combustion bomb experiments were carried out, and the droplet group micro- explosions in W/O fuel emulsion sprays in a high-pressure, high-temperature bomb were observed clearly by a multi-pulsed, off-axis, image-plane ruby laser holocamera and continuously by a high-speed CCD camera.The viscosity and atomization characteristics of emulsions were also studied experimentally. The experimental results show that the higher concentration of the aqueous phase (water-methanol) (<50%) increases the viscosity of the emulsions, especially for higher agent concentration, and higher aqueous phase concentration and higher viscosity results in lager Sauter Mean Diameter (SMD). The experiment results also show that the different kinds of emulsifying agents, with different Hydrophile-Lipophile Balance (HLB) values, have significant influence on the viscosity of the emulsions.
Resumo:
An information preservation (IP) method has been used to simulate many micro scale gas flows. It may efficiently reduce the statistical scatter inherent in conventional particle approaches such as the direct simulation Monte Carlo (DSMC) method. This paper reviews applications of IP to some benchmark problems. Comparison of the IP results with those given by experiment, DSMC, and the linearized Boltzmann equation, as well as the Navier-Stokes equations with a slip boundary condition, and the lattice Boltzmann equation, shows that the IP method is applicable to micro scale gas flows over the entire flow regime from continuum to free molecular.
Resumo:
Gas film lubrication of a three-dimensional flat read-write head slider is calculated using the information preservation (IP) method and the direct simulation Monte Carlo (DSMC) method, respectively. The pressure distributions on the head slider surface at different velocities and flying heights obtained by the two methods are in excellent agreement. IP method is also employed to deal with head slider with three-dimensional complex configuration. The pressure distribution on the head slider surface and the net lifting force obtained by the IP method also agree well with those of DSMC method. Much less (of the order about 10(2) less) computational time (the sum of the time used to reach a steady stage and the time used in sampling process) is needed by the IP method than the DSMC method and such an advantage is more remarkable as the gas velocity decreases.
Resumo:
Models describing wet adhesion between indenters and substrates joined by liquid bridges are investigated. The influences of indenter shapes and various parameters of structures on capillary force are focused. In the former, we consider several shapes, such as conical, spherical and truncated conical indenter with a spherical end. In the latter, the effects of the contact angle, the environmental humidity, the gap between the indenter and the substrate, etc. are included. Different dependences of the capillary force on the indenter shapes and the geometric parameters are observed. Most interesting finding is that applying the present results to micro- and nano-indentation experiments shows the size effect in indentation hardness not produced but underestimated by the effects of capillary force.(4 refs)